The 'mitoflash' probe cpYFP does not respond to superoxide

Markus Schwarzländer,
Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany, markus.schwarzlander@uni-bonn.de

Stephan Wagner,
Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany

Yulia G. Ermakova,
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia

Vsevolod V. Belousov,
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia

Rafael Radi,
Center for Free Radical and Biomedical Research, Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay

Joseph S. Beckman,
Linus Pauling Institute, Environmental Health Sciences Center, Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, USA

Garry R. Buettner,
The University of Iowa, Department of Radiation Oncology and Interdisciplinary Graduate Program in Human Toxicology, and ESR Facility, College of Medicine, Med Labs B180K, Iowa City, IA 52242-1181, USA

Nicolas Demaurex,
Department of Cell Physiology and Metabolism, University of Geneva, 1, rue Michel-Servet, Geneva 4 CH-1211, Switzerland

Michael R. Duchen,
Department of Cell and Developmental Biology and Consortium for Mitochondrial Research, University College London, Gower Street, London WC1E 6BT, UK

Henry J. Forman,
Life and Environmental Sciences Unit, University of California, Merced, 5200 N. Lake Road, Merced, CA 95344, USA; Andrus Gerontology Center of the Davis School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA

Mark D. Fricker,
Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK

David Gems,
Institute of Healthy Ageing, and Department of Genetics, Evolution and Environment, University
College London, London WC1E 6BT, UK

Andrew P. Halestrap,
School of Biochemistry and The Bristol Heart Institute, University of Bristol, University Walk,
Bristol BS8 1TD, UK

Barry Halliwell,
Department of Biochemistry, National University of Singapore, Singapore 117597, Singapore

Ursula Jakob,
Molecular, Cellular and Developmental Biology Department, University of Michigan, Ann Arbor,
MI 48109-1048, USA

Iain G. Johnston,
Department of Mathematics, South Kensington Campus, Imperial College London, London SW7
2AZ, UK

Nick S. Jones,
Department of Mathematics, South Kensington Campus, Imperial College London, London SW7
2AZ, UK

David C. Logan,
Université d’Angers & INRA & Agrocampus Ouest, UMR 1345 Institut de Recherche en
Horticulture et Semences, Angers, F-49045, France

Bruce Morgan,
Division of Redox Regulation, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance,
Im Neuenheimer Feld 280, 69120 Heidelberg, Germany

Florian L. Müller,
Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX
77030, USA

David G. Nicholls,
Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato California 94945, USA

S. James Remington,
Department of Physics, Institute of Molecular Biology, University of Oregon, Eugene, Oregon
97403-1229, USA

Paul T. Schumacker,
Department of Pediatrics, Division of Neonatology, Northwestern University, Feinberg School of
Medicine, Chicago, Illinois, IL60611, USA

Christine C. Winterbourn,
Centre for Free Radical Research, Department of Pathology, University of Otago, Christchurch,
PO Box 4345, Christchurch, New Zealand

Lee J. Sweetlove,
Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK

Andreas J. Meyer,
Abstract

Ageing and lifespan of organisms are determined by complicated interactions between their genetics and the environment, but the cellular mechanisms remain controversial. There have been a number of studies suggesting that cellular energy metabolism and free radical dynamics affect lifespan, implicating mitochondrial function. Recently, Shen et al. provided apparent mechanistic insight by reporting that mitochondrial oscillations of ‘free radical production’, called ‘mitoflashes’, in the pharynx of 3-day old Caenorhabditis elegans correlated inversely with lifespan. The interpretation of ‘mitoflashes’ as ‘bursts of superoxide’ radicals assumes that circularly permuted yellow fluorescent protein (cpYFP) is a reliable indicator of mitochondrial superoxide. This interpretation has been criticised because experiments and theoretical considerations both show that changes in cpYFP fluorescence are due to alterations in pH, not superoxide. We now provide direct evidence that purified cpYFP is completely unresponsive to superoxide. Therefore ‘mitoflashes’ do not reflect superoxide generation and are not evidence for a link between mitochondrial free radical dynamics and lifespan.
cpYFP sensor signal required for superoxide-related ‘mitoflashes’, as long as the pH and halide ion concentrations were kept constant.

‘Mitoflashes’ can be fully explained by the extraordinary pH sensitivity of cpYFP, which has a pKₐ of ≈8.7 (upon excitation at 488 nm, the wavelength at which flashes are observed) and shows a >50-fold change in fluorescence ratio between pH 7 and 10, similar to the structurally related pH-sensor Syph (Fig. 1J,K,L)⁸. In the mitochondrial matrix a resting pH (∼7.9) close to sensor pKₐ and a limited pH buffering capacity mean that even minor perturbations will elicit a pronounced sensor response (Fig. 1A,B,D,E). The cpYFP pH sensitivity is due to the structural perturbation caused by the circular permutation. A large cleft in the β-barrel exposes the pH-active phenoxy group of the chromophore (Fig. 1M, left panel), which is concealed in non-permuted GFP-based biosensors (Fig 1M, right panel).

Based on this evidence using purified cpYFP and earlier studies in cells and isolated mitochondria⁵,6,9, the ‘mitoflash’ phenomenon cannot be attributed to bursts of mitochondrial superoxide. In accordance with the pH responsiveness of the probe, recent work with different sensors suggests that ‘mitoflash’ events indicate brief periods of alkalinisation in individual mitochondria, possibly as a result of acceleration in proton pumping, triggered by mitochondrial fusion initiation and/or a change in ion homeostasis⁶,9,10.

The debate about the nature of ‘mitoflashes’ has focussed on in situ evidence which has left space for interpretation on both sides. Critics have pointed out the implausibility of ‘superoxide flashes’ based on mitochondrial energetics⁵,5,9, the absence of a plausible chemical mechanism for the reversible interaction between cpYFP and superoxide⁴,7, and the fact that the pH sensor Syph also detects ‘mitoflashes’⁶,10. These arguments have been countered by data suggesting a correlation of ‘mitoflashes’ with the response of chemical ROS probes¹¹-¹³, the notion that the pH probe Syph may also respond to superoxide¹⁷, and the suggestion that a ‘mitoflash’ represents a mixture of superoxide burst and pH transient¹¹,¹³. Ultimate resolution of the debate has been hampered by the use of different biological systems and the complexity of mitochondrial physiology, where matrix pH and free radical release are connected via the electron transport chain and linked to several other parameters such as availability of respiratory substrates, membrane potential, redox and ion homeostasis, and mitochondrial morphology²,5-7,10,14-16. Here we resolve the controversy by a thorough analysis of the fundamental properties of the ‘mitoflash’ sensor cpYFP.

Previous work already excluded the suggestion that the pH probe Syph responds to superoxide⁶. We now provide definitive evidence that cpYFP itself does not respond to superoxide and that flashes recorded by cpYFP do not represent superoxide bursts. Of course, sudden changes in mitochondrial physiology may still include altered free radical levels. While the ‘mitoflash’ phenomenon may reflect an important feature of mitochondrial function that deserves further mechanistic analysis the interpretation of the events by Shen et al. lacks a biophysical foundation and ‘mitoflashes’ cannot serve as evidence for free radical involvement in determining lifespan.

Nature. Author manuscript; available in PMC 2015 October 23.
Methods

cpYFP was purified from *Escherichia coli* Origami (DE3) and Rosetta 2 (DE3) 24 h after induction at 20 °C and assayed at 10, 25 and 1000 μg protein/mL using a Jasco spectrofluorimeter FP8300 and a BMG Labtech Clarostar plate reader. Detector gain was adjusted for individual experiments. Buffers contained 100 mM NaCl, 1 mM Na$_2$EDTA and 100 mM Tris-HCl, pH 7.5 (for thiol redox and superoxide assays; degassed and under argon for thiol redox treatments) or 100 mM Tris-TES (for pH assays). All reagents were dissolved in assay buffer, except for xanthine (100x stock in 1 M KOH, base required for solubility) and xanthine oxidase (118x (NH$_4$)$_2$SO$_4$ suspension as delivered by Sigma). Protein structures (PDB entries 3O78 and 1JC1) were rendered using PyMOL.

References

5. Schwarzländer M, Logan DC, Fricker MD, Sweetlove LJ. The circularly permuted yellow fluorescent protein cpYFP that has been used as a superoxide probe is highly responsive to pH but not superoxide in mitochondria: implications for the existence of superoxide ‘flashes’. Biochemical Journal. 2011; 437:381–387. doi:10.1042/BJ20110883. [PubMed: 21631430]

Figure. Spectroscopic and structural analysis of the ‘mitoflash’ probe cpYFP
(A) cpYFP fluorescence excitation spectra (emission at 515 nm) and (B) emission spectra
(excitation at 488 nm) upon addition of X (xanthine 2 mM), XO (xanthine oxidase 100 mU/
mL), SOD (bovine Cu/Zn superoxide dismutase 600 U/mL) and KOH (solvent control for
xanthine, note pH increase), and the in situ pH of the assayed 200 μL reaction mix. (C)
Cytochrome c reduction detected by absorption at 550 nm to measure superoxide generation
in response to the X/XO system in the presence and absence of SOD and in response to
KOH as solvent control for X. Cyt c 100 μM; arrows indicates X or KOH addition. (D) The
response of cpYFP excitation ratio (488/405 nm) to superoxide generation. The arrow
indicates introduction of X to constitute the X/XO system. Controls contained either SOD in
addition or no XO. (E) The same assays were performed with KOH introduction as solvent
control for X. (F) cpYFP fluorescence excitation spectra and (G) emission spectra upon 24 h
incubation with DTT (dithiothreitol; 10 mM) and DPS (2,2′-dipyridyl disulfide; 1 mM) and
the in situ pH of the assayed 200 μL reaction mix. (H) cpYFP fluorescence ratio upon DTT
and DPS addition over 3 h; arrow indicates DTT or DPS addition. (I) Cross-sections through
a surface model of cpYFP (left and middle). Chromophore (chr) and cysteines are
represented as ball-and-stick models. The Cys^{171} thiol is relatively close to the protein
surface, but unlikely to be accessible to solutes as indicated by the docking of a DTT

Nature. Author manuscript; available in PMC 2015 October 23.
molecule to the protein surface (right). (J) cpYFP fluorescence excitation spectra (emission at 515 nm) and (K) emission spectra (excitation at 488 nm) in response to pH as determined in situ after the measurements. (L) pH dependence of cpYFP excitation ratio (488/405 nm; normalized to pH 7.0) as compared to the cpYFP part of the pH sensor SypHer. (M) Sectional views through volume models of cpYFP and roGFP2, with the clipping plane parallel to and just above the chromophore phenoxy ring. The chromophore is represented as a ball-and-stick model. Data in panels A-H and J-L are background corrected and experiments were repeated at least 5 times with consistent results.