Lipid peroxidation and antioxidant status in colorectal cancer

Elzbieta Skrzydlewska, Stanislaw Sulkowski, Mariusz Koda, Bogdan Zalewski, Luiza Kanczuga-Koda, Mariola Sulikowska

AIM: Reactive oxygen species (ROS) can induce carcinogenesis via DNA injury. Both enzymatic and non-enzymatic parameters participate in cell protection against harmful influence of oxidative stress. The aim of the present study was to assess the levels of final lipid peroxidation products like malondialdehyde (MDA) and 4-hydroxy-2-nonenal (4-HNE) in primary colorectal cancer. Moreover, we analysed the activity of main antioxidative enzymes, superoxide dismutase (Cu, Zn-SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and glutathione reductase (GSSRG-R) and the level of non-enzymatic antioxidants (glutathione, vitamins C and E).

METHODS: Investigations were conducted in 81 primary colorectal cancers. As a control, the same amount of sample was collected from macroscopically unchanged colon regions of the most distant location to the cancer. Homogenisation of specimens provided 10% homogenates of samples was collected from macroscopically unchanged colorectal cancers. As a control, the same amount of sample was collected from macroscopically unchanged colon regions of the most distant location to the cancer. Investigations were conducted in 81 primary colorectal cancers.

RESULTS: Our studies demonstrated a statistically significant increase in the level of lipid peroxidation products (MDA-Adc.muc. -2.65±0.48 nmol/g, Adc.G3-1.15±0.44 nmol/g, clinical IV stage 4.04±0.47 nmol/g, P<0.001 and 4-HNE-Adc.muc. -0.44±0.07 nmol/g, Adc.G3-0.44±0.10 nmol/g, clinical IV stage 0.52±0.11 nmol/g, P<0.001) as well as increase of Cu,Zn-SOD (Adc.muc.-363±72 U/g, Adc.G3-318±48 U/g, clinical IV stage 421±58 U/g, P<0.001), GSH-Px (Adc.muc. -2143±623 U/g, Adc.G3-2005±591 U/g, clinical IV stage 2467±368 U/g, P<0.001) and GSSRG-R (Adc.muc.-880±194 U/g, Adc.G3-795±228 U/g, clinical IV stage 951±243 U/g, P<0.001) in primary tumour comparison with normal colon (MDA-1.39±0.15 nmol/g, HNE-0.29±0.03 nmol/g, Cu, Zn-SOD-117±25 U/g, GSH-Px-1723±189 U/g, GSSRG-R-625±112 U/g) especially in mucinous and G3-grade adenocarcinomas as well as clinical IV stage of colorectal cancer. We also observed a decrease of CAT activity (Adc.muc. -40±14 U/g, clinical IV stage 33±18 U/g vs 84±17 U/g, P<0.001) as well as a decreased level of reduced glutathione (clinical IV stage 150±48 nmol/g vs 167±15 nmol/g, P<0.05) and vitamins C and E (vit. C-clinical IV stage 325±92 nmol/g vs 513±64 nmol/g, P<0.001; vit. E-clinical IV stage 13.3±10.3 nmol/g vs 37.5±5.2 nmol/g).

CONCLUSION: Colorectal carcinogenesis is associated with serious oxidative stress and confirms that gradual advancement of oxidative-antioxidative disorders is followed by progression of colorectal cancer.

© 2005 The WJG Press and Elsevier Inc. All rights reserved.

Key words: Colorectal cancer; Lipid Peroxidation; Oxidative Stress; Carcinogenesis

INTRODUCTION

Colorectal cancer is one of the most frequent neoplastic diseases in human population and one of the most frequent causes of death. There are a lot of pathological factors, including reactive oxygen species (ROS) involved in the process of cancer initiation and progression[1]. Damages to DNA, protein, cell membrane and mitochondria are involved in carcinogenesis, although no specific biochemical marker has been identified yet. In addition, information on the biochemical alterations in tissue and blood, particularly of antioxidant status, and its correlation with the clinical staging of the disease, is lacking.

It is known that ROS are formed in excess in chronic diseases of the gastrointestinal tract[2] but the precise mechanisms of oxidative stress being induced in cancer cells and the role of ROS in colorectal cancer progression are still not exactly understood. Changes in some parameters of antioxidative system in colorectal cancer were found in our earlier studies[3]. The current researches, comprising a more extensive group of patients, dealt with the analysis of connections between the degree of lipid peroxidation as well as the parameters of antioxidative system and selected anatomico-clinical features of carcinoma.

The aim of the present study was to assess the levels of lipid peroxidation products like malondialdehyde (MDA) and 4-hydroxy-2-nonenal (4-HNE) in primary colorectal cancer. Moreover, we analysed the non-enzymatic antioxidants (glutathione, vitamins C and E) and the activity of antioxidative enzymes, particularly superoxide dismutase (Cu, Zn-SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and glutathione reductase (GSSRG-R).

MATERIALS AND METHODS

Investigations were conducted in 81 primary colorectal cancers in II, III and IV clinical stage[4]. As a control, the same amount of samples was collected from macroscopically unchanged colon regions of the most distant location to the cancer.
Conventional histopathological parameters, including AJCC/UICC
TNM stage, tumor type, and grade of differentiation, were
assessed by two independent pathologists. Differentiation and
histological type of the cancer were determined following the
World Health Organization guidelines[4].

Preparation of tissue samples
Tissues were removed quickly and placed in iced 0.15 mol/L
NaCl solution, perfused with the same solution to remove blood
cells. Next, tissue samples were blotted on filter paper, weighed
and homogenized in 9 mL ice-cold 0.25 mol/L sucrose and
0.15 mol/L NaCl with addition of 6 µL 250 mmol/L butylated
hydroxytoluene in ethanol, to prevent formation of new peroxides
during the assay. Homogenization procedure was performed
under standardized conditions; 10% homogenates were
centrifuged at 10 000 g for 15 min at 4 °C and the supernatant
was kept on ice until assayed.

Biochemical assays
Superoxide dismutase (Cu, Zn-SOD; EC.1.15.1.1) activity was
measured after rehomogenization of the initial supernatant and
centrifugation at 10 000 g for 30 min at 40 °C as described by
Sykes et al[5]. This method could measure the activity of
cytosolic SOD. Mn-SOD of the mitochondria was known to be
removed during the separation procedure. A standard curve
for SOD activity was constructed using SOD from bovine
erythrocytes (Sigma, Biochemicals, St. Louis, MO, USA). One
unit of SOD activity was defined as the amount of the enzyme
that transformed 50% of durohydroxytoluene at 240 nm was measured
by monitoring the NADPH
oxidation of reduced form of
superoxide dismutase
antioxidative enzymes increased (P<0.05) between activity of Cu, Zn-SOD, glutathione
peroxidase (GSH-Px) and glutathione reductase (GSSG-R) (Table 2) were
considered statistically significant.

RESULTS
Considerable parameters of antioxidative system and the level
of lipid peroxidation products matched the analysed
anatomoclinical features of colorectal cancer in a statistically significant
manner. The lipid peroxidation products and the activity of
antioxidative enzymes increased (P<0.001) during progression
of colorectal cancer. The levels of MDA and 4-HNE (Table 1) as
well as superoxide dismutase (Cu, Zn-SOD), glutathione peroxidase
(GSH-Px) and glutathione reductase (GSSG-R) (Table 2) were
significantly increased (P<0.001) in cancer tissue compared to
control group and were the highest in G3-grade adenocarcinoma
and mucinous adenocarcinoma and clinical IV stage of colorectal
cancer. Statistically significant differences P<0.05, P<0.001
between levels of lipid peroxidation products as well as enzyme
activity among all clinical stages (II-III, II-IV and III-IV) of
colorectal cancer as well as between activity of Cu, Zn-SOD, GSH-Px and GSSG-R in G2-grade and G3-grade adenocarcinoma
and mucinous adenocarcinoma were observed. On the other hand

Table 1 Levels of final lipid peroxidation products - malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) in the colorectal
cancer and normal colon mucosa (mean±SD)

<table>
<thead>
<tr>
<th>Variable</th>
<th>n</th>
<th>MDA</th>
<th>4-HNE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histological type/grade of colorectal cancer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adc.G2</td>
<td>60</td>
<td>1.97±0.39</td>
<td>0.40±0.08</td>
</tr>
<tr>
<td>Adc.G3</td>
<td>6</td>
<td>2.15±0.44</td>
<td>0.44±0.10</td>
</tr>
<tr>
<td>Adc.muc</td>
<td>15</td>
<td>2.65±0.48</td>
<td>0.44±0.07</td>
</tr>
<tr>
<td>Clinical stage of colorectal cancer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>46</td>
<td>1.73±0.39</td>
<td>0.37±0.05</td>
</tr>
<tr>
<td>III</td>
<td>29</td>
<td>2.25±0.43</td>
<td>0.45±0.09</td>
</tr>
<tr>
<td>IV</td>
<td>6</td>
<td>4.04±0.47</td>
<td>0.52±0.11</td>
</tr>
<tr>
<td>Control (normal colon mucosa)</td>
<td></td>
<td>1.39±0.15</td>
<td>0.29±0.03</td>
</tr>
</tbody>
</table>

P<0.05, P<0.001-comparison between Adc G2 or stage II cancers and control group; P<0.05, P<0.001-comparison between Adc G3 or stage III cancers and control group; P<0.05, P<0.001-comparison between mucinous adc or stage IV cancers and control group; P<0.05-comparison between Adc G2 or stage II cancers and Adc G3 or stage III cancers; P<0.05-comparison between Adc G2 or stage II cancers and mucinous adc or stage IV cancers; P<0.05-comparison between Adc G3 or stage III cancers and mucinous adc or stage IV cancers.
Histological Adc.G2 60 304±38 a 73±15 a 1 892±583 a 759±242 a 151±37 43±85 a 31.9±9.5 a
Type/gade of colorectal cancer Adc. muc 15 318±48 a 62±18 b 2 005±591 a 795±228 b 143±35 407±92 a 29.7±9.2 b
Clinical stage of colorectal cancer III 46 237±42 a 76±14 d 1 854±552 a 737±238 b 144±49 398±104 c 33.5±8.5 c
IV 29 289±47 c 57±16 d 1 987±699 c 824±256 c 156±39 e 399±90 d 29.1±9.4 e
Control (normal colon mucosa) 117±25 84±17 1 723±189 625±112 167±15 513±64 37.5±5.2

Table 2 Activity of antioxidative enzymes and levels of non-enzymatic antioxidants in colorectal cancers and normal colon mucosa

<table>
<thead>
<tr>
<th>Variable</th>
<th>Activity of antioxidative enzymes (U/g tissue)</th>
<th>Level of non-enzymatic antioxidants (nmol/g tissue)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cu, Zn-SOD</td>
<td>CAT</td>
</tr>
<tr>
<td>Histological</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adc.G2 60</td>
<td>304±38 a</td>
<td>73±15 a</td>
</tr>
<tr>
<td>Type/gade of</td>
<td></td>
<td></td>
</tr>
<tr>
<td>colorectal cancer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adc. muc 15</td>
<td>318±48 a</td>
<td>62±18 b</td>
</tr>
<tr>
<td>Clinical stage of</td>
<td></td>
<td></td>
</tr>
<tr>
<td>colorectal cancer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III 46</td>
<td>237±42 a</td>
<td>76±14 d</td>
</tr>
<tr>
<td>IV 29</td>
<td>289±47 c</td>
<td>57±16 d</td>
</tr>
<tr>
<td>Control (normal</td>
<td>117±25</td>
<td>84±17</td>
</tr>
</tbody>
</table>

Statistical differences: see Table 1.

catalase (CAT) activity was significantly decreased (P<0.001) in cancer tissue and was the lowest in mucinous adenocarcinoma and clinical IV stage cancer group (Table 2). The decreased levels of vitamin C and vitamin E as well as reduced glutathione in cancers were also observed (P<0.001, P<0.001 and P<0.05 respectively).

DISCUSSION

Formation of reactive oxygen species is a normal consequence of a variety of essential biochemical reactions. It is also known that oxygen radicals could be formed in excess in chronic diseases of the gastrointestinal tract[15]. The main source of oxidants in the gut is probably phagocytes, which are accumulated in the mucus of patients with bowel diseases and could generate oxidants upon activation, which might contribute to the increased risk of cancer[16]. Therefore, an adequate range of antioxidative defences within and outside the cells, has also been considered to be very important to offer protection against oxidative damages of cell components including membrane phospholipids[14].

Oxygen radical production, which increases with clinical progression of diseases, involves increased lipid peroxidation, as a result of which there are cellular membrane degeneration and DNA damage. Extent of lipid peroxidation could be determined by estimation of the final lipid peroxidation products - malondialdehyde and 4-hydroxy-2-nonenal, compounds known to produce protein cross-linking through Schiff’s base with DNA and DNA damage[21]. In the present study, the levels of malondialdehyde and 4-hydroxy-2-nonenal in colorectal cancer tissue were significantly increased with clinical staging of the disease. This finding is in accordance with previous work that reported increased plasma and tissue MDA concentrations in colorectal cancer patients[10,17]. It has been reported that malondialdehyde is a well-characterized mutagen[18] that reacts with deoxyguanosine to form a major endogenous adduct with DNA in human livers[22]. DNA from colon biopsies had also a significantly increased level of 8-OHdG, 2-hydroxyadenine and 8-hydroxyadenine[13]. These lesions caused by hydroxyl radical attack could signify the increase in DNA damage and/or decrease in their repair. However, 4-hydroxy-2-nonenal was found to be genotoxic in primary cultures of rat hepatocytes at low concentration[14]. These lesions caused by hydroxyl radical attack could signify the increase in DNA damage and/or decrease in their repair. However, 4-hydroxy-2-nonenal was found to be genotoxic in primary cultures of rat hepatocytes at low concentration[14].

Another important finding of this study was a significant increase in the activity of Cu, Zn-SOD, GSH-Px and GSSG-R in all clinical stages of cancer patients as compared to the control group, the maximum was at G3-grade adenocarcinoma and mucinous adenocarcinoma as well as in clinical IV stage of colorectal cancers. It was reported that increase in activity of Cu Zn-SOD, GSH-Px and GSSG-R might occur on the way of induction of genetic expression[26]. Increased superoxide dismutase activity could augment superoxide radical dismutation, thus leading to intensification of hydrogen peroxide generation.

In this study, catalase activity reduced, the level of hydrogen peroxide increased in cancer tissue. It may correspond with the report, which showed that some human cancer lines produced a large amount of hydrogen peroxide[29]. At the same time, oxygen radicals might increase secretion of the matrix metalloproteinase and collagenease as well as production of angiogenic factors (e.g., VEGF and IL-8). These factors could promote not only the local growth of neoplasm but also metastasis[29]. This agrees with the results of our present study since the highest increase in activity of Cu Zn-SOD, GSH-Px and GSSG-R as well as decrease in CAT activity (P<0.001) were observed in G3-grade adenocarcinoma and mucinous adenocarcinoma as well as in clinical IV stage of colorectal cancers. It was reported that increase in activity of Cu Zn-SOD, GSH-Px and GSSG-R might occur on the way of induction of genetic expression[26].

Oxidants, including hydrogen peroxide, have been found to be able to induce expression of genes coding enzymes of antioxidative system. This kind of induction of antioxidative enzymes could be induced by hydrogen peroxide was also found in human fibroblast cultures[27]. This increase might be caused by more extensive accessibility of enzymatic cofactors such as transient metal ions[30]. As a result of oxidative stress, iron and copper ions would become more accessible to antioxidative enzymes. Induction of genes coding superoxide dismutase activity has also been revealed in cases of burns and skin infections[31]. The above changes in dismutase activity, under genetic control, could make up a defensive mechanism, which enables organism adaptation to various environmental stress. Other studies showed a similar direction of changes in superoxide dismutase and glutathione peroxidase activities in cases of colorectal cancer[33], while GSH level increased or
decreased depending on studies2,3,11. Our result pointed to the increased activity of glutathione peroxidase in cancerogenesis process; however, the effective activity of this enzyme might take place only in the presence of GSH cofactor, whose level was, however decreased. Therefore, the effectiveness of GSH-Px activity was restricted, as manifested by the intensification of lipid peroxidation and the increased level of final products of their peroxidation.

As increased oxidative stress coupled with membrane damage due to lipid peroxidation antioxidant enzymes, a scavenger of oxygen radicals, might have increased as a compensatory mechanism; an antioxidant enzyme could enhance the cytotoxicity ability of macrophages to scaveng free radicals. They are present mainly intracellularly, whereas non-enzymatic antioxidants are present both extracellularly and intracellularly, thus presenting at the site of generation and also at the site of action of ROS in an adequate amount. As chemical scavengers, they prevent radical-induced cellular damage. It has been observed that ascorbic acid deficiency could result in accumulation of lipid peroxide, which is an intermediate product of lipid peroxidation31,34. Moreover, it is known that vitamin C plays an important role in the synthesis of connective tissue proteins such as collagen, and deficiency of it, therefore affects the integrity of intracellular matrix and has a permissive effect on tumour growth. Deficiency of vitamin C could hinder tumo encapsulation. Our results have proved that non-enzymatic level of antioxidants, such as vitamins C and E as well as GSH decreased in colorectal cancer. In such a situation non-enzymatic antioxidants are not able to prevent oxidative modifications of cell components. Their levels decrease with progression of colorectal cancer and are therefore higher in clinical stage II and lower in stage IV of colorectal cancer. The present results and the findings of previous studies show that colorectal carcinogenesis is associated with serious oxidative stress and that advancement of oxidative-antioxidative disorders is followed by progression of colorectal cancer.

REFERENCES

1. Zalewski B. Levels of v5 and v6 CD44 splice variants in serum of patients with colorectal cancer are not correlated with pT stage, histopathological grade of malignancy and clinical features. *World J Gastroenterol* 2004; 10: 583-585
34. Kucuk O, Churlery M, Goodman MT, Franke A, Custer L,