Aromatase, Aromatase Inhibitors, and Breast Cancer

Saranya Chumsri¹, Timothy Howes², Ting Bao¹, Gauri Sabnis³, and Angela Brodie³
¹Department of Medicine, University of Maryland School of Medicine, and the Greenebaum Cancer Center, Baltimore, MD, 21 USA
²Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, and the Greenebaum Cancer Center, Baltimore, MD, 21 USA
³Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, and the Greenebaum Cancer Center, Baltimore, MD, 21 USA

Abstract

Estrogens are known to be important in the growth of breast cancers in both pre- and postmenopausal women. As the number of breast cancer patients increases with age, the majority of breast cancer patients are postmenopausal women. Although estrogens are no longer made in the ovaries after menopause, peripheral tissues produce sufficient concentrations to stimulate tumor growth. As aromatase catalyzes the final and rate-limiting step in the biosynthesis of estrogen, inhibitors of this enzyme are effective targeted therapy for breast cancer. Three aromatase inhibitors (AIs) are now FDA approved and have been shown to be more effective than the antiestrogen tamoxifen and are well tolerated. AIs are now a standard treatment for postmenopausal patients. AIs are effective in adjuvant and first-line metastatic setting. This review describes the development of AIs and their current use in breast cancer. Recent research focuses on elucidating mechanisms of acquired resistance that may develop in some patients with long term AI treatment and also on innate resistance. Preclinical data in resistance models demonstrated that the crosstalk between ER and other signaling pathways particularly MAPK and PI3K/Akt is an important resistant mechanism. Blockade of these other signaling pathways is an attractive strategy to circumvent the resistance to AI therapy in breast cancer. Several clinical trials are ongoing to evaluate the role of these novel targeted therapies to reverse resistance to AIs.

Keywords

Breast cancer; Aromatase inhibitors
reproductive age. In contrast, estrone is a form of estrogens predominantly in postmenopausal women and estradiol is formed primarily during pregnancy. In premenopausal women, estrogens are synthesized from androgens by the granulosa cells in the ovaries. The main source of steroids in the ovaries is cholesterol. When ovaries are no longer functional, the source of estrogens in postmenopausal women comes from the peripheral conversion of androgens by the aromatase enzyme. This enzyme is present in multiple organs including adipose tissue, brain, blood vessels, skin, bone, endometrium, and breast tissue. Estrogens exert their activity by binding to the specific high affinity estrogen receptors (ER) including ERα and ERβ [2]. ERα is the subtype of ER that is required for most of the known estrogenic responses [3]. With the presence of ligand, ERα is displaced from the heat shock proteins and interacts either directly through specific estrogen response elements (EREs) or indirectly through transcriptional factors like AP1, SP1, and NF-κB [1, 4]. Beside its genomic action, recent data demonstrated that ER also has non-genomic activity by acting as a component of membrane and cytoplasmic signaling cascades [5].

The first and most successful targeted cancer therapies are those that target estrogen signaling pathway in breast cancer. Approximately three quarter of breast cancer tumors express hormone receptors like ER and/or progesterone receptors (PR). By modulating either its ligand or the receptor, this strategy has been shown to be effective in treating hormone receptor-positive breast cancer for over a century. In 1890s, Sir George Beatson demonstrated that the majority of breast cancers in premenopausal women respond to bilateral oophorectomy. At that time, it was hypothesized that most of the breast cancer tumors were dependent on “ovarian hormones” [6, 7]. Subsequently, other surgical modalities like adrenalectomy and hypophysectomy were also performed for the treatment of breast cancer [7]. One of the breakthroughs in breast cancer treatment is the discovery of drugs targeting the estrogen signaling pathway early 1970s. Tamoxifen, previously known as ICI 46,474, was the first targeted cancer therapy against this pathway that was approved for the treatment of breast cancer in the early 1970s [8]. Tamoxifen is categorized as a selective estrogen receptor modulator (SERM) due to its distinct actions in different organ sites. While tamoxifen is quite an effective treatment for patients with hormone receptor-positive breast cancer, it has adverse partial estrogenic effects in the uterus and vascular system causing an increased risk of endometrial cancer and thromboembolism [9] [10]. Due to these unfavorable side effects and incomplete blockade of estrogen action, the alternative approach to target the ligand production instead of the ER itself was hypothesized to be more effective with fewer side effects. This hypothesis came from Harry and Angela Brodie who were initially working on the biochemistry of aromatase and were developing the inhibitors of aromatase as potential contraceptive agents but also as improved treatment for breast cancer. They reported the first series of these compounds in 1973 [11] with the hope of blocking the production of estrogen with specific inhibitors of aromatase [11–13]. 4-hydroxy-androstenedione (4-OH-A) was demonstrated to be the most potent aromatase inhibitor of more than 100 compounds either synthesized or acquired for testing [13, 14]. Subsequently, this compound was found to act by rapid competitive inhibition as well as inactivation of the enzyme resulting in long lasting or irreversible effect [15]. It was further demonstrated that 4-OH-A could reduce estrogen concentrations which resulted in tumor regression in rat mammary tumors. Also, 4-OH-A appeared to be more effective than tamoxifen without the adverse estrogenic effect on other tissue particularly the uterus [13].

Given that the main source of estrogen production in postmenopausal women comes from the peripheral conversion by the aromatase enzyme, inhibition of this particular enzyme results in the significant further reduction of estrogens. AIs are now considered to be the standard of care for postmenopausal women with hormone receptor-positive breast cancer [16]. Nonetheless, the emergence of resistance to AIs continues to be problematic, particularly in metastatic breast cancer. This review article summarizes the structure and
function of aromatase enzyme, discovery and evolution of AIs, clinical efficacy of AIs, and recent insights into the mechanisms of AI resistance.

Aromatase Enzyme

The human aromatase enzyme is a member of the cytochrome P450 family and is the product of the *CYP19A1* gene, located on chromosome 15 [17, 18]. It functions to catalyze the rate-limiting and final step of estrogen biosynthesis; the aromatization of androgens to estrogens. It does this via three oxidation reactions of the androstenedione A-ring, with each reaction consuming a molecule of both oxygen and NADPH per reaction. Of these three steps, the third is unique to aromatase, while the first two are common to P450 cytochrome proteins [19]. Breast cancer tissues have been shown to express aromatase and produce higher levels of estrogens than non-cancerous cells. This is one of the main reasons that aromatase has generated a high level of interest for treatment of breast cancer [20]. As described previously, aromatase has also been found in a wide variety of tissues, including ovary, placenta, bone, adipose, testis, skin, and the brain [17, 21–25]. However, only in primates has aromatase been shown to function in tissues other than the gonads or brain. In primates, tissue-specific expression of aromatase is controlled by the presence of tissue-specific promoters [25, 26]. Aromatase is the only known vertebrate enzyme that can aromatize a six-membered ring; aromatase is, therefore, the sole source of estrogen in the body [27].

Traditionally, research on human aromatase has been performed on purified native or recombinant protein, allowing for kinetic analysis of aromatase function [22, 28]. It is well established that the microsomal enzymatic complex of human aromatase is a heterodimer made up of a cytochrome 450 aromatase, and a ubiquitous NADPH cytochrome P450 reductase [27]. The catalytic portion of cytochrome P450 aromatase contains a heme group as well as a steroid binding site [29]. There are still several areas of aromatase function that are not thoroughly understood, such as the third aromatization step, as well as the underlying reason for its high substrate specificity. To address this, some investigators have utilized homology models of aromatase, based on other P450 enzyme structures [30]. Additionally, a wide range of site-directed mutagenesis studies have been conducted, assaying aromatase function on androgens and putative aromatase inhibitors, and combining this information with chemical studies of estrogen biosynthesis in order to elucidate the mechanism of aromatase function as well as functional elements [31, 32].

Nevertheless, since aromatase was first characterized, research has been impeded by the lack of its three-dimensional structure. In 2009, Ghosh *et al.* successfully solved the crystallized structure of human aromatase enzyme and provides a structural basis for the specificity to androgen [33, 34]. The catalytic site of aromatase is located at the juncture of the I and F helices, β-sheet 3, and as the B-C loop. Androstenedione binds into the steroid-binding pocket such that its β-face orients towards the heme group of aromatase, placing C19 within 4.0 Å of the Fe atom. This binding site is only possible if the I-helix backbone is moved 3.5 Å, creating a binding pocket that is approximately 400 Å³. This important distortion is created by residue P308, without which N309, steric hindrance would prevent catalytic activity [33]. P308 is not found in any other member of the cytochrome P450 family, and its location on the distal side of the I-helix from the androstenedione, has made it an item of interest in site-directed mutagenesis studies. However, its mutation resulted in an enzyme with catalytic activity similar to wild type [31]. The active site of human aromatase is situated within the enzyme, and contains several closely packed hydrophobic residues, which serve to stack against the α-face backbone of androstenedione [34]. This, combined with the relatively long distance the steroid must travel to reach the active site on the deep interior of the generally spherical enzyme, yields a very high degree of substrate
specificity. This crystal structure of aromatase will not only allow better structure-based drug design than previous models, but it has also allowed a direct analysis of why some currently available aromatase inhibitors function better than others.

Discovery and Evolution of Aromatase Inhibitors

Around the same time that selective aromatase inhibitors were in development, aminoglutethimide, a drug that was initially used as an anti-epileptic drug, was found to suppress adrenal steroid production by inhibiting multiple cytochrome P450 enzymes. Since adrenalectomy has also been used to treat breast cancer, Richard Santen and colleagues started to use aminoglutethimide as a “medical” adrenalectomy for breast cancer. In late 1970s, they were able to show that aminoglutethimide was effective in treating breast cancer [35]. Subsequently, Santen demonstrated that the key beneficial effect of aminoglutethimide in fact was the inhibition of aromatase enzyme which resulted in the reduction of estrogens. Nevertheless, due to its inhibition of CYP11, cortisol replacement was also needed to be given in combination with aminoglutethimide. For this reason and a number of significant side effects, the use of aminoglutethimide to treat breast cancer had not been popularized [4, 9].

In the fall of 1981, Angela Brodie went to give a presentation in Rome about her research. Hearing her presentation, Charles Coombes expressed an interest to conduct a clinical trial with 4-OH-A to treat breast cancer. The first batch of 4-OH-A was produced at Angela’s laboratory at the University of Maryland. Subsequent toxicology testing was performed by the Cancer Research Campaign in the United Kingdom. In collaboration with Angela, Charles Coombes together with Paul Goss and Mitch Dowsett launched the first clinical trial of a selective AI using 4-OH-A for the treatment of breast cancer at the Royal Marsden Hospital in London. This and following clinical trials demonstrated that 4-OH-A was effect even in breast cancer patients who progressed on tamoxifen [4, 14, 15]. In the mid 1980s, 4-OH-A was renamed to formestane and became the first “selective” aromatase inhibitor used clinically for the treatment of breast cancer. This breakthrough has sparked and inspired the later development of a wide variety of AIs.

Current AIs can be classified into two subtypes, namely steroidal and non-steroidal AIs (Table 1). Given that some the AIs have steroid-like structure similar to the aromatase substrate, androstenedione, this subtype of AIs has been termed steroidal AIs or type I inhibitor. Due to its similarity, these AIs bind to the substrate-binding site of aromatase enzyme. After binding, they are converted to a reactive intermediate that covalently bind to the enzyme causing irreversible inaction. These inhibitors are also known as “suicide inhibitor” because the enzyme is inactivated by its own function [17, 18]. This subtype of AIs includes formestane and exemestane. For type II inhibitor or non-steroidal AIs, these AIs bind non-covalently to the heme moiety of the aromatase enzyme and prevent binding of androgens by saturating the binding-site. Unlike steroidal inhibitors, inhibition by this type of AIs is reversible by competitive inhibition of androgens [4, 18]. This particular subtype includes fadrozole, vorozole, roglitamide, letrozole and anastrozole. Although formestane, fadrozole, vorozole, and roglitamide showed some clinical activity in tamoxifen resistant breast cancer [15, 16, 35], they are no longer in clinical use as they were no more effective than tamoxifen or required intramuscular injection, had undesirable side effects, or suppression of aldosterone. These agents were superseded by the newer generation of AIs with better oral bioavailability and fewer side effects [36]. Currently, AIs that are now in clinical used and are approved by the US Food and Drug Administration (FDA) include anastrozole, letrozole, and exemestane. They are approved for postmenopausal women with hormone receptor-positive breast cancer in both the adjuvant and metastatic setting.
Clinical Efficacy of Aromatase Inhibitors

Due to the specificity of the aromatase enzyme, selective inhibition of aromatase would not interfere with the other steroid biosynthesis. All three available AIs appear to have comparable efficacy. Even though there is evidence that letrozole is more potent in reducing plasma estrogen levels [37], the clinical significance of this finding remains unclear. The phase III clinical trial comparing steroidal (exemestane) vs. non-steroidal (anastrozole) AIs is currently ongoing.

In general, AIs are well tolerated drugs with minimal side effects. The common side effects include hot flashes, vaginal dryness, and headache which are typically mild. Due to the lack of partial estrogenic effects, AIs do not increase the risk of endometrial cancer and thromboembolism like tamoxifen [4, 20–22]. However, AIs significantly increase musculoskeletal symptoms, osteopenia, osteoporosis and fracture rate when compared to tamoxifen (375 vs. 234 cases; incidence rate ratio [IRR] 1.55, p < 0.0001) [21].

Nevertheless, the long term follow of patients receiving AI in the ATAC (arimidex, tamoxifen, alone or in combination) trial demonstrated that the fracture risk appears to increase only while patients are on active treatment. After the treatment is completed, there was no significant difference in fracture risk (146 vs. 143 cases; IRR 1.03, p=0.79) [20]. Furthermore, patients at risk of osteoporosis can be given bisphosphonates, such as zoledronic acid (Zometa®). This not only reduces bone loss but also appears to synergize with AI's anti-tumor effect.

Below, we reviewed the clinical trial experience of AIs according to disease stage including metastatic and early stage disease as well as the role of AIs for chemoprevention. Important clinical trials of AIs are summarized in table 2 according to stage of the disease.

Metastatic Setting

For first line treatment, the three oral AIs have been demonstrated to be well tolerated and superior or at least as good as tamoxifen in response rate, median time to progression and clinical benefit rate [38–41]. The largest study involving 916 patients demonstrated that letrozole is superior to tamoxifen with a longer time to disease progression of 42 vs. 23 weeks (hazard ratio [HR] 0.70, p=0.0001) [42]. The subsequent two trials for anastrozole showed somewhat conflicting results. While the smaller North American study with 353 patients showed a significant improvement in time to disease progression of 11.1 vs. 5.6 months, p=0.005) [39], the similar study design with a larger population, TARGET trial, failed to confirm these findings (8.2 vs. 8.3 months, HR 0.99, p=0.941) [41]. Thus, anastrozole appears to be at least as good as or superior to tamoxifen. An European phase III study comparing exemestane with tamoxifen (EORTC 10951) also demonstrated a significant improvement in progression free survival (PFS) of exemestane over tamoxifen (HR=0.79, p=0.04) [43]. For the second line treatment after progression on tamoxifen, all of the third-generation AIs seemed to have a marginal benefit over megestrol acetate with only a modest improvement in response, clinical benefit, and median time to progression but they appear to have better tolerability [44–48]. Due to the rapid adoption of AIs into the adjuvant and first-line metastatic setting, the second line treatment with AIs is currently less clinically relevant [36].

Adjuvant Setting

Several strategies were employed to investigate the benefit of AIs as an adjuvant treatment for hormone receptor-positive breast cancer in postmenopausal women. These strategies include upfront treatment with AIs, switching therapy to AIs after 2–3 years of tamoxifen, and extended AI therapy after the completion of tamoxifen for 5 years (Table 2). For the
upfront strategy, there were three phase III clinical trials, namely ATAC [49], BIG 1–98 [50, 51], and ABCSG-12 trial [52], comparing 5 years of anastrozole or letrozole to 5 years of tamoxifen. The HR for disease free survival (DFS) of these studies ranges from 0.88–1.10 with no significant improvement in overall survival (OS). The lack of OS benefit may be related to considerable subsequent crossover after these trials had been reported. Of note, the combination arm of anastrozole concurrently with tamoxifen in the ATAC trial not only showed no additional benefit of the combination but also showed that the benefit of anastrozole over tamoxifen was lost in the combination[53].

Since prolonged exposure to tamoxifen can potentially lead to acquired resistance, several clinical trials were launched to evaluate the switching approach after a few years of tamoxifen to non-cross resistant agents like AIs (table 2). Five clinical trials (ABCSG-8 [54], BIG 1–98 [51], ARNO 95 [55], ITA [56], and IES [57]) comparing 5 years of tamoxifen to sequential treatment of AI after 2–3 years of tamoxifen demonstrated a significant benefit of the switching strategy over tamoxifen alone with the HR for DFS ranging from 0.57–0.76. There are only two trials comparing 5 years of AIs to the sequential therapy which include BIG 1–98 [51] and TEAM [58] trials. Both of the trials did not show statistically significant differences in DFS between AI alone group and tamoxifen sequenced with an AI group as well as an AI sequenced with tamoxifen group in BIG 1–98. However, there appears to be more early relapses in the tamoxifen followed by letrozole group comparing to upfront AI group particularly in women with lymph node involvement [51].

Given the prolong relapse prospect of hormone receptor-positive breast cancer, extended course of endocrine therapy has been evaluated in multiple clinical trials. Currently, extended therapy of tamoxifen beyond 5 years is still controversial. Although there appears to be some marginal benefit of extended tamoxifen, this is offset by its toxicities particularly increased risks of endometrial cancer and thromboembolism [59–61]. In contrast, three large randomized clinical trials (ABCSG 6a [62], MA.17 [63], NSABP B-33 [64]) have demonstrated that extending the duration of endocrine therapy with AIs after 5 years of tamoxifen can be beneficial.

Neoadjuvant Setting

Neoadjuvant therapy refers to any treatment including chemotherapy, endocrine therapy, or radiation that is given prior to surgery. This can be a mean to down-stage the tumor to improve the chance for patients to undergo breast-conserving surgery (BCS) [65] and, more attractively, providing an in vivo measurement of tumor response [36, 66]. As summarized in table 2, two clinical trials (IMPACT [67] and PROACT [68] trial) evaluated the use of tamoxifen and anastrozole for 3 months prior to surgery. There was no significant difference in overall response and it appears that anastrozole is at least as effective as tamoxifen. In contrast, the PO24 [69] study showed a significant increase in overall response rate and BCS conversion rate with letrozole for 4 months. A smaller Russian trial also showed a significant improvement in overall response rate and BCS conversion rate with exemestane for 12 weeks. Nevertheless, a head-to-head comparison between all three AIs in the neoadjuvant setting (ACOSOG Z1031) demonstrated no significant difference in response rate between all three AI (anastrozole 66.7% vs. letrozole 70.9% vs. exemestane 60.5%).

Chemoprevention

Based on these promising results of superiority of AIs over tamoxifen and approximately 50% reduction in the risk of contralateral breast cancer demonstrated by ATAC trial [49], AIs are being investigated as chemopreventive agents for breast cancer. Two large phase III trials are currently ongoing to evaluate this aspect including the IBIS II trial in Europe and the MAP-3 trial in Canada.
Resistance to Aromatase Inhibitors

While AIs are a very effective treatment, their benefit is often limited by emergence of resistance which can occur in a significant number of patients in the adjuvant setting and is inevitable in metastatic breast cancer. There appeared to be no cross resistance between steroidal and non-steroidal AIs regardless of the sequence, switching between these two subtypes can produce 0–26% objective response rates [70–72]. While the response rates are small, the substantial percentage of patients (50–62%) achieved stable disease of more than 6 months [72–76]. The large randomized phase III trial comparing exemestane vs. fulvestrant for second line endocrine therapy after progressing on a non-steroidal AI showed a clinical benefit rate of 32.2% vs. 31.5 (p = 0.853) but a rather short median time to progression of 3.7 months in both groups [77].

Multiple resistant mechanisms to AIs have been described and are summarized below. These mechanisms can be categorized into two distinct pathways including ER signaling and growth factor receptor pathways.

ER Signaling Pathway

It has long been known that breast cancers that do not express either ER or PR would not respond to endocrine therapy like AIs. Several studies have suggested that patients with higher ER or PR level have better outcomes when treated with endocrine therapy [78–80]. The recent American Society of Clinical Oncology (ASCO)/College of American Pathologists (CAP) recommended that ER and PR tests should be considered being positive if there are at least 1% positive tumor nuclei in the breast cancer tumors [78]. Nevertheless, approximately a third of breast cancers do not express both ER and PR and this type of breast cancer is intrinsically resistant to endocrine therapy including AIs. Our recent study as well as others demonstrated that these ER/PR-negative cancer cells can be re-programmed by epigenetic modulators like hypomethylating agents (i.e. 5-azacytidine) and histone deacetylase inhibitors (HDACi) [81–85]. Several in vitro studies demonstrated that treatment with these epigenetic modulators can induce expression of ER and PR which rendered them to be sensitive to endocrine therapy like tamoxifen [83]. Our group further demonstrated that the combination of entinostat, a class 1 selective HDACi, and letrozole can induce durable regression of MDA-MB-231 xenograft tumors in vivo [86–88]. These results open a new avenue for the treatment of these de novo endocrine resistant breast cancers.

For acquired resistance to AIs, we have developed an intratumoral aromatase breast cancer model to evaluate mechanisms of resistance to different AIs [12, 89]. This model mimics hormone receptor-positive breast cancer in postmenopausal women. In our experiments, xenografts with tumors of MCF-7 cells overexpressing aromatase (MCF-7Ca) were treated with letrozole and tumors were collected at different time points [90]. We found that by 28 weeks after treatment, there was a significant decrease in total ERα expression. However, the levels of phosphorylated ERα (p-ERα) in letrozole-resistant tumors were significantly higher than p-ERα level at baseline. Moreover, PR which is the downstream effector of ER also remained unchanged from the baseline (figure 1). This signifies that the ER signaling cascades continue to be an active driving force in AI resistant tumors despite the loss if its expression as discussed below.

Other mechanisms of resistance centering on ER signaling pathways include ERα mutation [91] and truncated ERα variant (ERα36) [92]. Moreover, upregulation of the ER-related transcription factors like activator protein 1 (AP1) [93] and NF-κB [94] as well as co-activators of ER such as AIB1 [95] have also been described to confer resistant to endocrine
therapy [5]. Nonetheless, these studies were described as resistant mechanisms to tamoxifen and the role of these mechanisms in AI resistance remain unclear.

Growth Factor Receptor Pathways

In our previously described experiment, beside lost of ERα expression, we also found that in tumors treated with letrozole for 28 weeks, there was significant upregulation of the human epidermal growth factor receptor 2 (Her2)/mitogen-activated protein kinase (MAPK) signaling pathway in letrozole resistant tumors. The expressions of Her2, p-Shc, Grb-2, p-Raf, p-Mek1/2, and p-MAPK were all significantly increased in the treatment group compared to baseline (figure 1). This effect can be observed as early as 4 weeks while tumors still responded to letrozole. Downstream targets of MAPK like p90 ribosomal S6 kinase (p90RSK) and the ETS-domain containing protein (Elk) were also found to be activated by phosphorylation [90]. Our subsequent studies demonstrated that overexpress of Her2 and subsequent activation of MAPK pathway in the letrozole resistant tumors appeared to be secondary to the change in the stability of Her2 protein and not due to Her2 gene amplification [96]. In contrast to letrozole, we found that resistance to anastrozole is associated with upregulations of insulin-like growth factor 1 (IGF-1) receptor and phosphatidylinositol 3-kinase (PI3K)/Akt pathway [97]. In a similar experiment, tumors treated with anastrozole were collected at 14 weeks when they became resistant to anastrozole. Although there was a reduction in total MAPK and p-MAPK, the expressions of IGF-1R and mammalian target of rapamycin (mTOR) as well as phosphorylated mTOR, a critical downstream effecter of PI3K/Akt pathway [97]. Besides phosphorylation of the ERα itself, these two pathways can also stimulate ER signaling pathway by phosphorylation of the ER co-activator AIB1 [102, 103].

Nonetheless, this cross-talk between ER and these 2 major signaling pathways appears to be a dynamic interface. Using the similar model, we found that interrupting letrozole treatment can reverse tumors into their baseline state. There are significant increases in ERα and aromatase expression levels as well as a reduction in phosphorylated MAPK to the similar levels at baseline. These changes after interrupting the treatment also restore the sensitivity to AIs. At 22 weeks, after LTLT-Ca (letrozole resistant) xenograft tumors have become resistant to letrozole, a short interruption of letrozole for 6 weeks can induce regress of tumors again after resuming letrozole treatment [96, 104]. Notably, intermittent treatment with letrozole (6 weeks on and 6 weeks off) in letrozole responsive tumors (MCF-7Ca) is inferior to continuous treatment as tumors can rapidly acquire resistance [96].

Given that overactive growth factor receptor signaling pathways confer resistance to AIs; our laboratory further demonstrated that disrupting these pathways with specific inhibitors can also restore AI sensitivity. Adding trastuzumab, a monoclonal antibody against Her2, to letrozole when MCF-7ca tumors have become resistant to letrozole can restore the sensitivity to letrozole and induce tumor regression (figure 2). Trastuzumab alone did not have anti-tumor activity in the parental endocrine responsive MCF-7Ca and the upfront combination of trastuzumab and letrozole did not prolong or avert the resistance [105]. Analysis of protein expression levels (figure 2B) in the tumors at the end of treatment showed reduced levels of HER2 with trastuzumab alone or in combination and increased expression of ER. However, in presence of the combined treatment, the effect of trastuzumab to increase ER expression and aromatase was blocked by letrozole resulting in
reduced tumor growth (figure 2A). We also demonstrate that inhibition of PI3K/Akt pathway by wortmannin together with fulvestrant, an estrogen receptor antagonist that down-regulates the ER, results in more effective tumor regression compared to either of the agent alone in the long-term estrogen-deprived aromatase-transfected ER-positive breast cancer model [106].

Multiple emerging clinical data have supported our preclinical findings. Lipton et al. demonstrated that approximately 26% of patients treated with letrozole converted from serum Her2 negative to positive at the time of disease progression [107]. The extracellular domain of Her2 protein can be detected in the peripheral blood has been demonstrated to correlate with the overexpression of Her2 protein in tumor cells [108]. Several clinical trials have confirmed the benefit of targeting both ER and HER2 pathways. A phase II trial of letrozole and trastuzumab in ER-positive/Her2-negative metastatic breast cancer patients demonstrated that the combination was well tolerated with a clinical benefit rate of 50% [109]. A subsequent phase III trial (TANDEM trial) of anastrozole in combination with trastuzumab demonstrated a significant improvement in PFS with an addition of trastuzumab (3.8 vs. 5.6 months; p = 0.0059) [110]. Moreover, recent randomized phase III trial of letrozole in combination with lapatinib, an oral dual tyrosine kinase inhibitor of HER2 and EGFR, also demonstrated a significant benefit of adding lapatinib to letrozole with the PFS of 8.2 vs. 3.0 months (HR of 0.71; p = 0.019) [111]. However, the benefit only appears to be in the group of patients with HER2 overexpression. Nonetheless, the preplanned Cox regression analysis of patients with Her2-negative tumors who relapse less than 6 months after tamoxifen discontinuation demonstrated a non-significant trend toward improvement in PFS for the combination (HR 0.78; p = 0.117) [111]. This result supports our preclinical finding that the upfront combination of AI with anti-Her2 therapy does not prolong or avert the resistance but the combination is more beneficial at the time of the resistance.

Conclusions

Given that the aromatase enzyme has a very specific function in the steroid biosynthesis, selective aromatase inhibition is truly a targeted approach for breast cancer treatment that confers only minimal side effects. In the past decade, multiple clinical trials have not only demonstrated a superior efficacy of AIs over tamoxifen, but also better side effect profile of these agents. AI is now considered to be a standard treatment for postmenopausal women with hormone receptor-positive breast cancer [16]. Nevertheless, the benefit of AIs is often limited by the emergence of resistance. Our preclinical data as well as others demonstrated that the crosstalk between ER and other signaling pathways particularly MAPK and PI3K/Akt is the key resistant mechanism. Interfering with these other signaling pathways is an attractive strategy to circumvent the resistance to AI therapy in breast cancer. Several clinical trials are ongoing to evaluate the role of these novel targeted therapies to reverse resistance to AIs. These agents include MEK inhibitors, Raf inhibitors, PI3K inhibitors, mTOR inhibitors, and Akt inhibitors. However, future studies are still needed to determine the strategy to prolong or avert the AI resistance. Furthermore, obtaining the tumor specimens when it is feasible in the patients with AI resistance is also critical. Global gene expression analysis of these biopsied specimens would allow us to have a better insight to the mechanisms underlying AI resistance.

References

J Steroid Biochem Mol Biol. Author manuscript; available in PMC 2012 May 1.

[58]. Rea, D.; Hasenburg, A.; Seynaeve, C. Five years of exemestane as initial therapy compared to 5 years of tamoxifen followed by exemestane: The TEAM Trial, a prospective, randomized, phase III trial in postmenopausal women with hormone-sensitive early breast cancer. 32nd Annual San Antonio Breast Cancer Symposium; San Antonio, TX. 2009.

Figure 1.
A. Effect of letrozole and tamoxifen as a first-line treatment on the growth of MCF-7Ca xenografts. Animals were inoculated with MCF-7Ca cells at two sites on each flank and were supplemented with androstenedione (100 Ag/d) for the duration of experiment. When the tumors reached a measurable size (~300 mm3), animals were assigned to three groups (n = 20 per group) and injected s.c. daily with vehicle (control), or tamoxifen (100 μg/d), or letrozole (10 μg/d). Tumor volumes were measured weekly and were expressed as the percent change relative to the initial tumor volume. Two mice per group were sacrificed and tumors were collected for analysis at 4, 28, and 56 weeks. B. The effect of letrozole treatment on Her-2, p-Shc, Shc, Grb2, p-MAPK, MAPK, ER-α, p-ER-α, and PR expression in MCF-7Ca tumor xenografts. Letrozole-treated tumors collected at 4, 28, and 56 weeks (A.), were analyzed by Western immunoblotting, and compared to vehicle-treated tumors collected at week 4 [12, 90].
Figure 2.

A. effect of trastuzumab alone or in combination with letrozole on the growth of MCF-7Ca xenografts. Trastuzumab (5 mg/kg/wk) did not inhibit the growth of MCF-7Ca tumors. The difference in the exponential variable governing growth rate of control versus trastuzumab treatment was 0.02 ± 0.14, which was not statistically significant (P = 0.86). The difference in the exponential variable governing growth rate of trastuzumab versus trastuzumab plus letrozole was 0.49 (P = 0.0001). The difference in the exponential variable governing growth rate of trastuzumab versus letrozole was 0.32 (P = 0.0009). The difference in the exponential variable governing rate of letrozole versus letrozole switched to letrozole plus trastuzumab was 0.21 ± 0.08 (P = 0.008). The difference in the exponential variable governing tumor growth rate of letrozole plus trastuzumab versus letrozole switched to letrozole plus trastuzumab was 0.39 ± 0.09 (P < 0.0001). The difference in the exponential variable governing rate of letrozole switched to trastuzumab versus letrozole switched to letrozole was 0.2 ± 0.08 (P = 0.011) over weeks 15 to 28. When compared with week 29, the difference in the exponential variable governing growth rate of letrozole versus letrozole switched to trastuzumab was 0.005 ± 0.08 (P = 0.97).

B. effect of trastuzumab and letrozole alone or in combination on protein expression of ERα, Her-2, MAPK, and CYP-19 in MCF-7Ca xenografts. Expression of proteins was examined using Western immunoblotting as described in Materials and Methods. Blot shows ERα at 66 kDa, Her-2 at 185 kDa, p-MAPK and MAPK at 42 to 44 kDa, CYP-19 at 55 kDa, and h-actin at 45 kDa. The blots show a single representative of three independent experiments. The blots were stripped and reprobed for h-actin to verify equal loading.
Table 1

Classification of AIs

<table>
<thead>
<tr>
<th>Generations</th>
<th>Type 1 Steroidal inhibitors</th>
<th>Type 2 Non-steroidal inhibitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonspecific inhibitor</td>
<td></td>
<td>Aminoglutethimide</td>
</tr>
<tr>
<td>Previous selective inhibitors not currently in clinical use</td>
<td>Formestane</td>
<td>Fadrozole</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rogletimide</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vorozole</td>
</tr>
<tr>
<td>Selective oral inhibitors currently in clinical use</td>
<td>Exemestane (Aromasin®)</td>
<td>Anastrozole (Arimidex®)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Letrozole (Femara®)</td>
</tr>
</tbody>
</table>