Glypican-3: a new target for cancer immunotherapy

Mitchell Ho* and Heungnam Kim
Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264

Abstract

Hepatocellular carcinoma (HCC) remains a common malignant cancer worldwide. There is an urgent need to identify new molecular targets for the development of novel therapeutic approaches. Here, we review the structure, function and biology of Glypican-3 (GPC3) and its role in human cancer with a focus on its potential as a therapeutic target for immunotherapy. GPC3 is a cell-surface protein that is over-expressed in HCC. Loss-of-function mutations of GPC3 cause Simpson-Golabi-Behmel syndrome, a rare X-linked overgrowth condition. GPC3 binds Wnt and Hedgehog signaling proteins. GPC3 is also able to bind basic growth factors such as fibroblast growth factor 2 through its heparan sulfate glycan chains. GPC3 is a promising candidate for liver cancer therapy given that it shows high expression in HCC. An anti-GPC3 monoclonal antibody has shown anti-cancer activity in mice and its humanized IgG molecule is currently undergoing clinical evaluation in patients with HCC. There is also evidence that soluble GPC3 may be a useful serum biomarker for HCC.

Keywords

glypicans; immunotherapy; biological markers; liver neoplasms; melanoma; ovarian neoplasms; endodermal sinus tumor; neuroblastoma; Wilms tumor

1. Introduction

Liver cancer is the fifth most common malignant cancer worldwide. According to the American Cancer Society (www.cancer.org), hepatocellular carcinoma (HCC) accounts for about 75 percent of liver cancer cases. Cholangiocarcinoma (CCA) is the second most common primary liver malignant tumor arising from cholangiocytes and CCA accounts for about 10% of primary liver cancer cases. In 2009, 22,620 new cases of primary liver cancer were found and 18,160 of these patients died in the United States. There are often no symptoms of liver cancer until the later stages. Currently, surgery is the standard treatment for liver cancer. Liver cancer does not respond to most chemotherapy drugs. There is an urgent need to develop new drugs with different mechanisms of action. Immunotherapy represents one new approach, but it remains a challenge mainly due to a lack of good tumor-specific targets.

*Corresponding Author: Dr. Mitchell Ho, Laboratory of Molecular Biology, National Cancer Institute, 37 Convent Drive, Room 5002, Bethesda, MD 20892-4264. Tel: +1-301-451-8727; Fax: +1-301-480-4667. homi@mail.nih.gov.

Conflict of interest statement

None declared

Publisher’s Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Glypican-3 (GPC3, also called DGSX, GTR2-2, MXR7, OCI-5, SDYS, SGB, SGBS, and SGBS1) is a cell surface protein that is highly expressed in HCC and some other human cancers including melanoma. The GPC3 gene encodes a 70-kDa precursor core protein, which can be cleaved by furin to generate a 40-kDa amino (N) terminal protein and a 30-kDa membrane-bound carboxyl (C) terminal protein, which has two heparan sulfate (HS) glycan chains. The GPC3 protein is attached to the cell membrane by a glycosyl-phosphatidylinositol (GPI) anchor (Fig. 1). The C terminal membrane-bound protein is recognized by the monoclonal antibody (mAb) 1G12. Loss-of-function mutations of GPC3 cause Simpson-Golabi-Behmel syndrome (SGBS), a rare X chromosome-linked overgrowth disorder typically associated with coarse faces with protruding jaw and tongue, widened nasal bridge, and upturned nasal tip. The patients are usually quite tall. The mice with GPC3 knockout show similar symptoms as seen in SGBS. GPC3 binds Wnt and Hedgehog (Hh) proteins. GPC3 is also able to bind fibroblast growth factor 2 (FGF-2) through its HS chains. Since it shows high expression in HCC, GPC3 has a potential as a promising target for tumor-specific therapy. Also, because small amounts of GPC3 can be detected in the blood of some patients with GPC3-positive cancers, measurement of GPC3 in the blood may be a useful diagnostic to follow the course of these patients. This review will give a brief overview of the structure, function and biology of GPC3 and its role in human cancer with a focus on its potential as a therapeutic target for immunotherapy.

2. GPC3 structure

In 1988, Filmus and colleagues identified the gene called OCI-5 in a rat undifferentiated epithelial cell line. The OCI-5 gene was later named GPC3 based on its homology with other known members of the glypican family. The GPC3 gene is located on human X chromosome (Xq26) where the most common gene (Isoform 2, GenBank Accession No.: NP_004475) encodes a 70-kDa core protein with 580 amino acids. Three variants have been detected that encode alternatively spliced forms termed Isoforms 1 (NP_001158089), Isoform 3 (NP_001158090) and Isoform 4 (NP_001158091). The distribution and functional significance of GPC3 isoforms are unknown. The protein core of GPC3 consists of two subunits, where the N-terminal subunit has a size of ~40 kDa and the C-terminal subunit is ~30 kDa (Figure 1). Furin cleavage between Arg358 and Ser359 is required for GPC3 modulation of cell survival and Wnt signaling in zebrafish, but is not required for HCC cell growth.

Six glypicans (GPC1-6) have been identified in mammals. All glypicans share a characteristic structure. First, they all have a conserved pattern of 14 cysteine residues, which may form intramolecular disulfide linkages. Second, they all consist of the HS chains in the C-terminal region close to the cell membrane. Third, glypicans are anchored to the cell surface via a GPI linkage. Using the big-PI Predictor (http://mendel.imp.ac.at/sat/gpi/gpi_server.html), serine 560 is predicted as a cleavage site in GPC3 for GPI anchorage (Fig. 1). These common features suggest that glypicans may share a similar three-dimensional (3D) structure.

3. GPC3 biology

Mutations in GPC3 result in SGBS, an X-linked condition characterized by pre- and postnatal overgrowth with visceral and skeletal anomalies. GPC3-deficient mice are able to exhibit the clinical hallmarks of SGBS patients. However, the biological functions of GPC3 and its role in tumorigenesis remain elusive.

As suggested by the knockout phenotype, GPC3 is involved in the control of cell proliferation and/or survival due possibly to its interaction with insulin-like growth factor (IGF)-2. However, many biochemical and genetic studies showing
that GPC3 does not regulate IGF signaling. Song et al. mated GPC3 knockout mice with insulin receptor substrate-1 (IRS-1) nullizygous mice and showed that GPC3 regulated organism growth independent of IGF signaling.15

Interestingly, GPC3 knockout mice exhibit alterations in Wnt signaling. GPC3 can form a complex with Wnt molecules and promote the growth of HCC by stimulating canonical Wnt signaling.4 It has also been established in genetic experiments that GPC3 regulates developmental growth by interacting with the Hh signaling pathway.3,17 Additionally, the HS chains of GPC3 are not required for its interaction with either Wnt or Hh proteins. While the HS chains are not essential for Wnt and Hh signaling, they may interact with other basic growth factors for cell growth. There is evidence showing that the HS chains can interact with FGF-2 and modulate growth factor activity.5 An interaction between GPC3 and FGF-2 has also been found in HCC cells.18

It has been hypothesized that a mutated GPC3 lacking the GPI anchoring domain can block Wnt signaling and inhibit the growth of Wnt-dependent tumors. Zittermann et al. recently showed that HCC cells infected with lentivirus expressing soluble GPC3 (sGPC3) have a lower cell proliferation rate possibly due to the sGPC3 protein secreted by infected cells.19 We have recently made recombinant sGPC3 (GPC3 GPI, amino acid residues Q25-H559) that lacks the GPI-anchoring domain in human HEK-293 cells and found recombinant sGPC3 protein can inhibit the growth of HCC.20 However, we can not rule out the possibility that inhibition of HCC growth may be due to the activity of other factors such as heparin-binding growth factors modulated by the HS chains.

4. GPC3 expression in human malignancies

HCC and CCA are the two major forms of primary liver cancer. There is a growing body of evidence to support that GPC3 is a new tumor marker for HCC. GPC3 is highly expressed in HCC,21 but not in CCA or normal liver tissue (Fig. 2). GPC3 is also expressed to a lesser degree in melanoma,22 ovarian clear-cell carcinomas,23 yolk sac tumors (YST),24 neuroblastoma, hepatoblastoma, Wilms' tumor cells, and other tumors.25,26 However, the significance of GPC3 as a diagnostic tool for human tumors other than HCC is unclear. On the other hand, GPC3 is silenced in breast cancer, mesothelioma, epithelial ovarian cancer and lung adenocarcinoma.27–29

4.1. GPC3 expression in HCC

GPC3 is highly expressed in HCC. In 1997, Hsu and colleagues first reported expression of GPC3 mRNA in 75% of HCC and 10% of gastric adenocarcinoma, but not in CCA.21 GPC3 is also expressed in the HCC cell lines, HepG2, Hep3B, HT17, HuH6, HuH7 and PLC/PRF/5.18 GPC3 protein expression is found in more than 70% of HCC tumors but not in normal liver tissue when using a rabbit polyclonal antibody raised against human GPC3 (residues 303–464; Cat No.: sc-11395, Santa Cruz Biotechnology, California)30 or with mAb 1G12.7 Due to the finding that GPC3-positive HCC patients have a significantly lower 5-year survival rate than GPC3-negative HCC patients, GPC3 expression is correlated with poor prognosis in HCC.31

4.2. GPC3 expression in melanoma

GPC3 has also been proposed as a novel tumor marker for the diagnosis of melanoma, especially in the early stages of the disease.32 GPC3 mRNA and protein have been found in >80% of melanomas and melanocytic nevus, Using a goat polyclonal antibody (W-18) raised against a NH\textsubscript{2}-terminal peptide (sc-10455, Santa Cruz Biotechnology, CA), an ELISA shows that sGPC3 protein is detected in the sera of 40% of melanoma patients. Surprisingly, serum GPC3 can even be detected in patients with stage 0 \textit{in situ} melanoma. GPC3 protein

\textit{Eur J Cancer}. Author manuscript; available in PMC 2012 February 1.
in sera from patients dramatically decreases after surgical removal of the melanoma. However, the role of GPC3 in melanomas is controversial. Kandil et al. could not detect the expression of GPC3 in melanoma using the 1G12 mAb specific for the C terminus. Further studies are necessary to validate GPC3 as a new tumor marker in early detection and follow-up of patients with melanoma.

4.3. GPC3 expression in ovarian cancer and other tumors

Early studies have found that GPC3 expression is undetectable in a significant proportion of ovarian cancer cell lines. However, using the 1G12 mAb, Stadlmann et al. recently examined tissues from 308 patients and found that GPC3 was expressed in a total of 18% of ovarian carcinomas. Interestingly, more than 60% of ovarian clear-cell carcinomas express GPC3. The results suggest that GPC3 may represent a potential biomarker for ovarian clear-cell carcinomas. However, using the same 1G12 mAb, Esheba et al. showed that most ovarian clear-cell carcinomas were negative for GPC3. Because the histological distinction between clear cell adenocarcinoma and yolk sac tumor is difficult, it has been suggested that GPC3 immunostaining in ovarian tumors should be used in combination with other tumor markers.

GPC3 immunostaining may be useful in the diagnosis of YST and choriocarcinoma, since there is evidence showing that YST and choriocarcinoma are immunoreactive for GPC3. Expression of GPC3 is also found in neuroblastoma, hepatoblastoma, Wilms’ tumor cells, testicular nonseminomatous germ cell tumors, liposarcoma, and a distinct group of gastric carcinomas called GPC3-GC. Further studies are needed to determine the role of GPC3 as a tumor marker in these tumors.

5. GPC3-targeted immunotherapy

Given the high expression of GPC3 in HCC, melanoma, and clear cell carcinomas of the ovary, GPC3 has been evaluated as a potential candidate for cancer immunotherapy. The usefulness of GPC3 as a therapeutic target for both antibody- and cell-based immunotherapies has been explored.

5.1. Anti-GPC3 antibody therapy in HCC

In 2003, a mAb against a GPC3 peptide consisting of 17 residues (355–371) was reported as a research tool to study the interaction of GPC3 and FGF-2. Also in 2003, Filmus and colleagues described a mAb called 1G12 (IgG1, κ) specific for the last 70 amino acids of the C terminus of the GPC3 core protein and used it to detect serum GPC3 in HCC patients. Hippo et al. developed two mAbs, M18D04 and M19B11, specific for the N terminus of GPC3 (residues: 25–358). Although both laboratories used the mAbs with two different terminal groups, they found a similar proportion of GPC3-positive sera in HCC patients. In addition, Yamauchi et al. made a form of GPC3 protein lacking the GPI anchor (GPC3GPI) region in CHO cells and used the recombinant protein as an immunogen to obtain two mAbs, A1836A for the N terminus of GPC3 and GPC3-C02 for the C terminus. These mAbs were used as reagents for immunohistochemistry analysis of cancer.

The first therapeutic mAb against GPC3 has recently been described. Its epitope is located at the C terminus (residues: 524 – 563). The mAb, designated GC33 (IgG2a, κ), induced antibody-dependent cellular cytotoxicity (ADCC) and exhibited tumor growth inhibition of subcutaneous transplanted HepG2 and HuH-7 ectopic xenografts in mice. GC33 also reduced the blood α-fetoprotein levels of mice intrahepatically transplanted with HepG2 cells in an orthotopic model. Humanized GC33 (hGC33) has been generated by CDR grafting and is as effective as GC33 against the HepG2 xenograft. The ADCC anti-tumor activity of GC33 is mainly due to natural killer cells. On the other hand, Takai et al.
investigated the relationship between membrane expression of GPC3 and recruitment of tumor-associated macrophage (TAM). Based on these evidences, they observed the involvements of infiltrated TAM in anti-GPC3 immunotherapy model using GC33, showing macrophages may play an important role in the anti-tumor activity of GC33 by non-ADCC mechanisms such as modulation of GPC3 functions. In addition, GC33 does not directly inhibit the proliferation of GPC3-positive tumor cells. To fully evaluate GPC3-targeted antibody therapy, the mAbs that target different functional domains (including the HS chain) of GPC3 would be useful. It would be interesting to investigate the anti-tumor activity of the anti-GPC3 mAbs that are able to directly inhibit cancer cell proliferation and/or survival by blocking Wnt and/or other signaling pathways. It has been suggested that an anti-GPC3 antibody may increase the susceptibility of HCC to chemotherapeutic agents. The anti-tumor activity of hGC33 combined with standard chemotherapy agents has recently been evaluated. The combination of hGC33 and sorafenib is more potent in inhibiting tumor growth than sorafenib alone in the HepG2 xenograft model. The combination regimen may be clinically useful as an anti-liver cancer therapy. hGC33 is currently being evaluated in Phase I clinical trials for liver cancer (Chugai Pharmaceutical Development Pipeline Report, April 23, 2010; http://www.chugai-pharm.co.jp/english/ir/pdf/100423ePipeline.pdf).

5.2. GPC3 cancer vaccines

There is increasing evidence that GPC3 is an effective target in HCC and melanoma for cancer vaccines. In subcutaneous ectopic xenografts in mice using the Colon26 cell line transfected with mouse GPC3 gene, the transfer of GPC3-reactive cytotoxic T lymphocytes (CTL) or GPC3 peptide pulsed dendritic cells elicit a protective effect in mice. This work indicates that GPC3 is highly immunogenic in mice and can induce effective antitumor immune response with no evidence of autoimmunity. Transgenic mice have been used to identify the HLA-A2-restricted GPC3 epitopes in order to expand the applications of GPC3-based immunotherapy to HLA-A2+ HCC patients. The GPC3 (residues: 144–152) peptide can induce peptide-reactive CTLs in transgenic mice. A phase I clinical trial of a GPC3-derived peptide vaccine for advanced HCC is now underway. In another study, stem cell-derived dendritic cells expressing GPC3 can elicit protective immunity against mouse B16-F10 melanoma, naturally expressing GPC3, and GPC3-transfectant MCA205 sarcoma. Both CD8+ and CD4+ T cells may contribute to the antitumor effect. Therefore, it is possible that dendritic cells expressing GPC3 may be useful for cancer therapy.

6. Soluble GPC3 as an HCC diagnostic tumor marker

Filmus and colleagues developed the 1G12 mAb specific for the C terminus of GPC3 and established an ELISA method to measure serum GPC3 in HCC patients. In this study, GPC3 was significantly increased in the serum of 53% of patients with HCC, but undetectable in healthy donors and patients with hepatitis. On the other hand, Hippo et al. developed mAbs specific for the N terminus (residues: 25–358) of GPC3 and found GPC3 was significantly increased in the serum of 51% of HCC patients. In a recent study done in Thailand using 1G12, serum GPC3 levels were increased in 53% patients with HCC. The percentage was in agreement with previous reports. However, it is not clear what form of the GPC3 protein is actually present in the circulating blood of cancer patients. As such, this is an important question for GPC3 as a serological marker of HCC and other tumors. The published studies coincide that the N-terminus and C-terminus of GPC3 are linked by disulfide bonds despite the cleavage of GPC3 by furin. Future studies are necessary to reveal the biochemistry of serum GPC3.
7. GPC3 immunohistochemistry for HCC tumor diagnosis

GPC3 has been proposed as an immunohistochemistry marker to differentiate HCC from benign hepatocyte nodules.40 It remains an essential problem to differentiate between HCC and CCA, particularly intrahepatic CCA (ICC). GPC3 expression cannot be found in either ICC or gallbladder cancer. Thus, these studies have suggested a diagnostic potential of GPC3 in primary liver cancer, particularly HCC.50,51 As shown in Figure 2, most of the GPC3 expression patterns in HCC show the cytoplasmic pattern. Shirakawa and colleagues previously found that almost half of the HCC cases showed the mixed pattern (cytoplasm and membrane) and the other half showed only the cytoplasmic pattern.31 A recent study was performed using HepG2 xenograft tissues to optimize the tissue processing method for GPC3 immunohistochemistry.52 Further studies are needed to clarify whether a different localization of GPC3 has a different functional significance and a diagnostic value. An examination of additional patient studies from various human risk populations including specific clinicopathological features and prognostic values is also necessary to provide further insight into GPC3 detection as a general diagnostic tool.

8. Conclusions

GPC3 is highly expressed in HCC and currently being evaluated as a target for antibody- and cell-based therapies of HCC. Future work may lead to the generation of new anti-GPC3 mAbs that target various functional domains including the HS chain and examine whether an anti-GPC3 mAb can directly inhibit tumor growth by blocking the ligand-receptor interactions involved in Wnt and/or other signaling pathways. Also, recent studies have indicated that soluble GPC3 could be valuable as a tumor marker for diagnosis and follow-up of patients with GPC3-expressing malignancies. However, the biochemistry of serum GPC3 remains elusive. It would be interesting to investigate the 3D structure of GPC3 and the molecular mechanisms underlying the shedding of GPC3 from cancer cells. In addition, immunohistochemistry studies show GPC3 is valuable to the pathologist for tumor diagnosis. Further studies with a large number of patient studies from various human risk populations and with GPC3 alone or in combination with other tumor proteins would validate the use of GPC3 as a diagnostic marker for HCC and other GPC3-expressing human tumors.

Acknowledgments

This research was supported by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research. We thank the NIH Fellows Editorial Board for their review of the manuscript, and Yen Phung and Anna Mazzuca for editorial assistance. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.

References

Fig. 1.
Schematic of the GPC3 protein. The human GPC3 gene encodes a 70 kDa precursor protein of 580 amino acids. Upon translocation into the endoplasmic reticulum, the N-terminal signal peptide (SS; residues 1–24) and the C-terminal GPI anchor addition signal (a predicted cleavage site: S560) are removed and the latter is replaced with a GPI anchor. The GPC3 precursor is cleaved into two subunits, NH\textsubscript{2} terminus (residues Q25 – R358) and the GPI-anchored membrane-bound COOH terminus starting from S359. The three N-linked glycans (black lollipops; N124, N241 and N418) are indicated.
Fig. 2.
GPC3 expression in human primary liver tumors. GPC3 expression was detected by immunohistochemistry using mAb 1G12 in tissue specimens of patients with HCC (A); CCA (B); and normal liver tissue (C). Brown staining indicates GPC3 protein expression.