ISOLATION OF TRICHOPHYTON RUBRUM
(CASTELLANI) SABOURAUD, 1911, FROM ANIMALS

by A. N. CHAKRABORTY,¹ S. GHOSH¹ and F. BLANK²

Trichophyton rubrum (Castellani) Sabouraud, 1911, was first isolated by Bang (1) in 1910 at the Hôpital St. Louis in Paris from two persons who probably became infected in America, and during the same year by Castellani (2) in Ceylon. This dermatophyte which apparently originated in the Far East (3) has now spread to all five continents. At the present time, it is a species that is very often isolated from ringworm of the smooth skin and the nails. Bang (1), working with the first isolated strains, encountered difficulty in producing experimental infection of the hairs of guinea pigs. Similar observations were reported by several authors (4, 5, 6, 7, 8); however, other reports (9, 10, 11, 12, 13) mentioned the successful experimental infection of laboratory animals. The type of infection in the successful experiments varied, and in some instances an endothrix type (12, 13), in others an endo-ectothrix type (6, 9, 11) was observed. This particular behaviour of Trichophyton rubrum might explain the small number of reports of cases of ringworm of the scalp and the beard caused by this dermatophyte (4, 12, 13, 14, 15, 16, 17, 18) and the entire lack of any report of an isolation of this fungus from animals. Therefore, we were greatly surprised when we were able to isolate Trichophyton rubrum from three animals (one dog and two cows) treated at the Bengal Veterinary College and Hospital, Belgachia, Calcutta. The dog (Fig. 1) showed lesions on the buttocks and the trunk dorsal to the front legs. Loss of hairs was noticed in a few places. These places were scaly, moist and apparently itchy. The first cow had small raised plaques covered with scabs, on the head, around the muzzle and on the side of the nostril. On removal of the scab, there was an exudation of blood. There were also signs of a mild secondary infection. The second cow was covered with ringworm-like lesions all over the body.

In all three cases no infected hairs were found; the scarcity of infected hairs has already been noted in cases of dermatomycosis caused by Trichophyton granulosum (19, 20).

The cultures of Trichophyton rubrum showed slight radial folds near the margin around the hemispherical center. Later, the cultures became completely overgrown by a long, fluffy, white, aerial mycelium. On Sabouraud glucose agar a purple pigment was formed which also appeared in the marginal hyphae. Pigment formation did not occur on Sabouraud maltose agar. Microscopically, pyriform microconidia, mostly borne singly on the hyphae, and sausage-like, thin-walled macroconidia were seen. In older cultures many chlamydospores were present.

¹Department of Dermatology, Calcutta School of Tropical Medicine, Calcutta, India.
²Department of Bacteriology and Immunology, McGill University, Montreal, Canada.
REFERENCES


Fig. 1.—Dog Infected Trichophyton rubrum


SPORADIC BOVINE ENCEPHALOMYELITIS

In 1953, Wenner and his associates (Amer. J. Hyg., 57. 1-14; 15-29) reported on the isolation of a member of the psittacosis-lymphogranuloma family of viruses from nine cases of sporadic bovine encephalomyelitis. They have recently described the results of their infectivity tests in calves (J. Infect. Dis., 94: 284-295, 1954). In calves ranging in age from 2 weeks to 8 months that were infected by intracerebral, intraperitoneal or subcutaneous routes, a mild illness occurred without frank clinical signs of encephalomyelitis. Focal perivascular infiltration in meningeal veins was observed but not the diffuse encephalomyelitis encountered among animals succumbing during epizootics. Group-specific antibodies for the psittacosis-lymphogranuloma venereum family of viruses, demonstrable by complement-fixation tests, appeared during convalescence as they do in cases occurring in naturally affected herds.

USE AND ABUSE OF MEDICAMENTs IN FEED

Medication is effective only when the diagnosis is accurate. As practiced at present, subacute intoxications occur more commonly than is recognized. Agents which are incompatible, such as para-aminobenzoic acid for chronic respiratory disease and sulfonamides for coccidiosis control, are sometimes fed simultaneously. Flowers of sulfur, sometimes used as a coccidiostatic agent, may interfere with normal bone formation in chickens and some sulfonamides may affect the calcium deposit in egg-shell formation. Furthermore, such drugs may be objectionably found in poultry meats and eggs, just as antibiotic drugs, when promiscuously fed to cows, may be found in their milk.