INTRODUCTION

This manuscript contributes to a series of updates to the 5th Edition of Rogers Textbook of Pediatric Intensive Care. Only manuscripts published subsequent to the 5th edition and thought to advance our understanding and approach to pediatric shock care were considered in this review. Thus, this targeted review is not meant to be comprehensive but to inform readers of developments that may further our understanding or dictate a change in practice. Based on our review and the manuscript intent, we found exciting, robust, and new information pertaining to the epidemiology and recognition of shock, largely centered on...
septic shock. Additionally, data has emerged to identify timing of death, gaps in care, and methods to risk stratify that may lead to more aggressive and earlier interventions.

Other exciting work provided new evidence in areas which we previously relied on consensus of experts only. For instance, the role of lactate in sepsis in children is now bolstered by studies pointing to its clinical role, while we have a better understanding of the alteration in mitochondrial function during sepsis. In addition, the timing of antimicrobial therapy and choice of vasoactive agents has now been supported by pediatric studies.

Recent evidence on predictors of mortality in both high and low resource utilization areas of the world allow us to better understand where targeted interventions may make a difference. In addition, our understanding of the role of extracorporeal therapies as well as the controversial use of corticosteroids in sepsis and septic shock are now being bolstered by some direct evidence. Moreover, meticulous and robust quality improvement projects have elucidated some beneficial approaches to shock recognition and management. These include the use of rapid improvement cycles as well as electronic activation alerts and protocols. Finally, while not pediatric-specific, a comprehensive “roadmap for future research” in sepsis provides insight into how to unravel the pathobiology and address the thorny issues of sepsis recognition and management on a global scale (1).

Epidemiology and Recognition of Shock

Several large studies have reported on the occurrence and outcomes of septic shock amongst children who require intensive care. The first study, by Schlapbach et al., examined 97,127 children younger than 16 years admitted to pediatric intensive care units (PICUs) in Australia and New Zealand between 2002 and 2013 (2). Patients were identified using diagnostic codes that have been implemented within the Australia and New Zealand Paediatric Intensive Care (ANZPIC) registry and sepsis was defined using consensus criteria (3). Overall, 6.9% of patients had invasive infections, 2.9% had sepsis, and 2.1% had septic shock with the standardized incidence increasing over time in each category. Seventeen percent of the children with septic shock died, with a non-significant trend toward lower mortality over time. Notably, the combination of invasive infection, sepsis, and septic shock accounted for over one-quarter of all PICU deaths. In multivariable analyses, oncologic conditions, bone marrow transplantation, chronic neurological disorders, and illness severity scores were independently associated with mortality.

The second was the Sepsis Prevalence, Outcomes, and Therapies (SPROUT) study, which was an international prospective point-prevalence study conducted on five days throughout 2013–2014 at 128 sites in 26 countries (4). The SPROUT study prospectively screened 6,925 PICU patients using consensus criteria for severe sepsis and septic shock and found a prevalence of 8.2% (95% CI 7.6%, 8.9%) and PICU mortality rate of 24%. Prevalence and mortality ranged 6–23% and 11–40%, respectively, across geographic regions. Seventeen percent of survivors exhibited at least new moderate disability at hospital discharge.

Similarly, using data from 43 U.S. children’s hospitals in the Pediatric Health Information System (PHIS) database between 2004 and 2012, Ruth et al. reported a 7.7% prevalence of severe sepsis amongst PICU admissions with an associated mortality of 14.4% (5).
Balamuth et al. also used 2004–2012 PHIS data to investigate hospital-wide sepsis prevalence and mortality using two different ICD-9-CM code strategies, noting a seven-fold higher prevalence and three-fold lower mortality for patients identified using combination codes for infection plus organ dysfunction compared to sepsis-specific codes (6). For those patients with sepsis-specific codes, whom this same group has shown to be a more reliable indicator of true severe sepsis (7), mortality was 21.2%.

Together, these large epidemiologic studies highlight the persistent burden of septic shock amongst children requiring intensive care, with a mortality rate of 14–24% within PICUs that exceeds estimates from population-based registries and approaches ICU mortality rates reported in adults. In particular, the study by Balamuth and colleagues emphasizes that the more commonly reported pediatric sepsis mortality rates of 2–8% (8–10) are likely to be diluted by the inclusion of large numbers of children with mild sepsis who do not require critical care. Indeed, Kissoon and Uyeki emphasized that sepsis-related pediatric deaths are likely to be substantially underestimated worldwide—especially in resource-limited settings—because childhood deaths due to infections outside of the neonatal period are currently categorized by infection-type even though the unifying feature of nearly all of these deaths is that they are due to sepsis (11).

Neither of the two above studies accounted for sepsis- or shock-related deaths prior to hospital or PICU admission. Cvetkovic and colleagues studied 627 consecutive referrals of children up to age 16 years for severe sepsis/septic shock to a regional PICU transport service in North Thames, England between 2005 and 2011 (12). Of the 130 children who died within one-year of the initial referral, 55% died within 24 hours including half of these deaths occurring prior to PICU admission. The majority of these early deaths reflected unsuccessful shock resuscitation with cardiac arrest. Although the high occurrence of fulminant meningococcal septic shock in this study (one-third of deaths) may limit generalizability to other regions, the authors pointed out that delayed or inadequate resuscitation is problematic in many of these cases (13, 14). In addition, these findings raise concern that hospital-based epidemiological studies and PICU-based interventional trials may inadvertently exclude many patients with fulminant shock at high risk for poor outcomes, and that future clinical trials, quality improvement efforts, and education need to be directed to the pre-PICU environment.

An ongoing challenge to the early recognition of septic shock in children is the lack of “gold-standard” criteria to define either sepsis or shock. In the SPROUT study, 31% of PICU patients diagnosed with severe sepsis or septic shock by the treating physician did not meet published consensus criteria for these conditions, even though mortality remained high at 17% for these patients (15). Recently, updated definitions and criteria were developed to better integrate sepsis pathobiology with content-valid clinical criteria for sepsis and septic shock in adults (16). Rather than using non-specific systemic inflammatory response syndrome (SIRS) criteria, Sepsis-3 now recommends prompt evaluation for infection-induced organ dysfunction for adult patients with tachypnea, abnormal mentation, or hypotension. However, this approach has not yet been recommended for children and whether simplifying criteria to suspect sepsis can improve early recognition and enhance resuscitation in a manner that improves outcomes remains to be tested.
Laboratory Markers of Shock

The optimal marker to identify shock and determine response to resuscitative therapies remains controversial. While serial blood gas and lactate evaluations are widely used to compliment the clinical assessment of systemic perfusion, strong data supporting the utility of hyperlactatemia and lactate clearance in pediatric shock have been lacking. Two recent studies by Scott and colleagues have shed additional light on the potential utility of lactate testing to aid physician diagnosis and management of shock in the emergency department setting (17, 18). In a prospective cohort study of 239 children <19 years with SIRS, those with venous lactate ≥4 mmol/L had a relative risk of 5.5 (95% CI 1.9, 16.0) of developing organ dysfunction within 24 hours of presentation and had a longer duration of organ dysfunction than patients without elevated lactate (median 6 versus 2 days) (18). In a separate study, Scott et al. found that normalization of lactate to <2 mmol/L within four hours of septic shock presentation was associated with a lower adjusted risk of persistent organ dysfunction at 48 hours (aRR 0.47, 0.0.29, 0.78) (17). However, lactate clearance of at least 10% over 2–4 hours was not associated with decreased organ dysfunction at 48 hours. Two important notes about the 2016 Scott et al study are that 1) the overall median lactate level was relatively low at 2–3 mmol/L and 2) the subgroup with lactate normalization had a significantly lower initial median lactate compared to the non-normalization group (2.0 versus 3.6 mmol/L) suggesting normalization was a potential surrogate for lower illness severity. Although these studies provide new data about the potential diagnostic and prognostic utility of lactate measurements in pediatric septic shock, there remains insufficient data testing lactate-guided shock resuscitation algorithms or comparison of lactate to more direct measures of cardiac output or regional blood flow assessments in children. Moreover, even if hyperlactatemia does indicate a higher relative mortality risk, several studies have also shown unacceptably high mortality in children with septic shock without hyperlactatemia (19, 20).

The recently published updated definition of adult septic shock extends prior notions of septic shock as a state of acute circulatory failure to a condition with both circulatory and cellular metabolic abnormalities (16). Although Sepsis-3 recommends using hyperlactatemia to identify “cellular metabolic abnormalities” in adults, the task force conceded that blood lactate levels are unlikely to capture the complete picture of metabolic derangements in patients with shock. However, elevated lactate often represents an inability to cells to effectively utilize oxygen to make energy (ATP) through mitochondrial aerobic metabolism. New pediatric data along these lines were provided by Weiss et al. by measuring direct alterations in mitochondrial respiration in peripheral blood mononuclear cells (PBMCs; lymphocytes and monocytes) from 13 children with septic shock and multiple organ dysfunction (MODS) and 11 PICU controls without sepsis or organ dysfunction (21). This study demonstrated that bioenergetic reserve (i.e., ability of PBMCs to use oxygen to make ATP in response to a stress-induced increase in metabolic demand) was decreased and mitochondrial proton leak (i.e., oxygen utilization uncoupled from ATP production) was increased in septic shock. Decreased bioenergetic reserve also inversely correlated with ScvO2. Furthermore, changes in mitochondrial membrane potential on day 1–2 were associated with duration of organ dysfunction. This small study supports the concept that cellular metabolic abnormalities are present in pediatric septic shock, though more study is
needed to determine its contribution to shock-induced organ dysfunction and clinical outcomes. In adult septic shock, three recent large randomized trials found that universal central venous pressure (CVP)-, ScvO2-, and lactate-guided therapy through a central venous catheter was not superior to standardized protocols with more selective measurement of these parameters (22–24). Whether peripheral blood markers or other non-invasive hemodynamic or metabolic assessments will further improve resuscitation of shock in children is not yet clear.

Antimicrobial Therapy

Adult literature and the Surviving Sepsis Campaign support rapid administration of antimicrobial therapy in septic shock. However, literature on the impact of shorter time to antimicrobial therapy on outcome in pediatric sepsis is limited. Two retrospective cohort studies performed in PICUs have now been published examining this question. Weiss et al. studied 130 patients with severe sepsis treated in a single PICU over a one year period (25). PICU mortality in the cohort was 12%. Median time from sepsis recognition to antimicrobial administration was 140 minutes, and 18% received antimicrobials in the first hour. After adjusting for severity of illness, the odds ratio of death at PICU discharge was 4.84 (95% CI 1.45–16.20) for delays in antimicrobial administration greater than 3 hours. Antimicrobial delays greater than 3 hours were also associated with fewer organ failure-free days in this cohort, but not with ventilator-free days or PICU length of stay.

In contrast, von Paridon et al. did not find an association between timing of antimicrobial administration and outcome (26). This study examined 79 children treated in a single PICU meeting a pragmatic definition of sepsis. Included patients had SIRS, suspected or proven bacterial or fungal infection treated with antibiotics, and had an arterial or central venous line. A subset of 44 patients had septic shock, defined as an infusion of an inotrope or vasopressor. One-year mortality for the whole cohort was 6%. Median time from presentation to appropriate antimicrobial administration was 115 minutes, and 25% received antimicrobials in the first hour. There was no association between time to antimicrobials and PICU length of stay or one-year mortality.

While the study by von Paridon and colleagues did not confirm the association seen by Weiss and colleagues, this could be related to sample size, different inclusion criteria, and different primary outcome measures. Von Paridon et al. included a broader sample of patients with sepsis, while Weiss et al. focused only on severe sepsis with resulting discrepancies in mortality. Additionally, in the von Paridon study, patients expected to not survive more than 24 hours were excluded, which could have eliminated a subset of patients that might have been impacted by timing of antimicrobial administration. Further rigorous, prospective, multicenter study is needed regarding timing of antimicrobial therapy and outcomes in pediatric shock.

Vasoactive Therapy

Multiple components of the recommended bundle of initial resuscitative care in pediatric shock (e.g. timing of antimicrobials, choice and volume of fluid resuscitation, and vasoactive infusion therapy) are based on expert opinion, extrapolation of adult data, and uncontrolled
pediatric studies. A study by Ventura et al. offers new direct pediatric data (20). These authors performed a single center, double-blind, randomized controlled trial evaluating dopamine versus epinephrine as the first-line vasoactive infusion for fluid-refractory pediatric septic shock. This is the first randomized trial comparing initial choice of vasoactive infusions in pediatric septic shock. The study was done in a PICU in Brazil, and 120 children age 1 month to 15 years were enrolled and randomized. Patients with ongoing clinical signs of hypoperfusion after 40 mL/kg of fluid resuscitation were randomized to receive either dopamine (starting at 5mcg/kg/min and escalating in two dose increments to 10mcg/kg/min) or epinephrine (starting at 0.1mcg/kg/min and escalating in two dose increments to 0.3mcg/kg/min). Escalations were performed every 20 minutes if the patient’s hemodynamics had not met protocolized targets until the maximum dose was reached. Open label vasoactive medications were then added and titrated by the treating clinician if the patient remained unresponsive to study drug at the maximum dose.

Baseline characteristics in the two groups were similar. Mortality rate was lower in the epinephrine group (7%) than the dopamine group (14%, p=0.033). The odds ratio of death for patients in the dopamine group compared to the epinephrine group was 6.5 (95% CI 1.1–37.8). Systolic blood pressure, mean arterial blood pressure (MAP), and MAP-CVP were higher in the epinephrine group at six hours after randomization and at the end of resuscitation, suggesting either that epinephrine is more effective than dopamine to reverse shock, or that achieving higher blood pressures during resuscitation, potentially explained more by differences in dose-escalation rather than different drugs, may improve survival. There was also an increased odds of healthcare-associated infection in the dopamine group (OR 67.7, 95% CI 5.0–910.8). More hyperglycemia was seen in the epinephrine group. The study vasoactive medication was delivered either via peripheral intravenous catheter or intraosseous line while central venous access was secured. There were no extravasation injuries observed in either group. While this study is limited by being performed at a single center and using a dose titration of vasoactive infusions that my not be equivalent across groups, the results are still compelling and warrant further study. The dose titration period was also aggressive and patients unresponsive to escalating therapy after 60 minutes on the protocol were moved to open label therapy. Interestingly, for those who required vasoactive medications in addition to the study drug, no additional dopamine was used.

The Vasoactive Inotrope Score (VIS) is a score that attempts to normalize dosages of different vasoactive infusions to enable comparison of degree of hemodynamic support between patients receiving different or multiple vasoactive medications. This score has been shown to be a predictor of morbidity and mortality after cardiopulmonary bypass surgery in children. Haque et al. retrospectively evaluated 71 children with fluid-refractory septic shock admitted to a PICU in Pakistan (27). In this cohort, higher VIS was associated with mortality, and all children with VIS>20 died. The authors suggest that VIS is a simple tool that can be used as an outcome predictor, especially in resource-limited settings.

Extracorporeal Therapies

In 2009, the American College of Critical Care Medicine clinical practice parameters for hemodynamic support of pediatric septic shock were updated. The update included
continued recommendation for consideration of extracorporeal membrane oxygenation (ECMO) support for refractory shock and a new recommendation for fluid removal through diuretics, peritoneal dialysis, or continuous renal replacement therapy for those with signs of fluid overload once adequately fluid resuscitated. Ruth et al performed a retrospective cohort study examining the outcomes of children with severe sepsis treated in PICUs at 43 children’s hospitals in the Pediatric Health Information System (PHIS) database who were supported with ECMO or renal replacement therapy (RRT) (28). Overall hospital mortality was 47.8% for those supported with ECMO, 32.3% for those treated with RRT, and 58% for those receiving both therapies.

The authors found that patients with severe sepsis were more likely to receive ECMO support between 2009 and 2012 compared to 2004 through 2008 (OR 1.18, 95% CI 1.06–1.33), and a lower likelihood of receiving RRT in 2009–2012 compared to 2004–2008 (OR 0.64, 95% CI 0.59–0.69). They also found a 6% annual decrease in mortality in patients with severe sepsis treated with these extracorporeal therapies. A similar improvement in mortality was seen for the subset of patients with severe sepsis and malignancy treated with extracorporeal therapies. Mortality for patients with severe sepsis treated with ECMO correlated inversely with center volume of ECMO cases. These data are supportive of the idea that while the mortality remains high for patients with severe sepsis requiring extracorporeal support, steady improvement in outcomes is evident.

Mortality Prediction and Risk Stratification

Early risk stratification using biomarkers is a promising method to identify patients at higher risk for morbidity and mortality who would be candidates for more aggressive interventions or for clinical trial enrollment. Acute kidney injury (AKI) is common in severe sepsis and associated with poor outcome. Wong et al. measured AKI biomarkers in a derivation cohort of 241 children with septic shock and a separate test cohort of 200 children with septic shock to determine a risk stratification model using Classification and Regression Tree analysis (29). The model predicts septic AKI at day 3 of septic shock, and the authors postulate that identification of these at risk patients could inform clinical decision making.

The risk stratification final model included the presence of AKI on day 1, and biomarkers elastase 2, matrix metalloproteinase 8, and proteinase 3. In the test cohort, 29% of patients identified as at intermediate to high risk had septic AKI at day 3, versus only 2% of the patients identified as low risk by the model. The model had excellent performance in the derivation cohort (area under the curve (AUC) of 0.95 and sensitivity of 93%) and very good performance in the test cohort (AUC 0.83 and sensitivity of 85%). In both cohorts, the model added to predictive ability of the presence of septic AKI on day 1. In the combined cohort (derivation and test cohorts), the model was more predictive of septic AKI on day 3 than other mortality prediction models (PRISM or PERSEVERE, a biomarker-based mortality prediction model), reflecting that the model developed was biologically plausible and predictive of AKI rather than a simple reflection of illness severity.

Early prediction of morbidity and mortality is important for risk stratification in patients with severe sepsis. It is well recognized that patients have not returned fully to baseline health at hospital discharge, and are at risk for subsequent re-hospitalization and mortality.
Determining factors that impact post-discharge mortality may help providers identify patients that would most benefit from close follow-up while recovering from sepsis.

Wiens et al. derived risk prediction models for post-discharge mortality in a population of 1,242 children in Uganda hospitalized for acute infections using readily measured variables (30). The final model for post-discharge mortality prediction included mid-upper arm circumference, time since last hospitalization, oxygen saturation, abnormal Blantyre Coma Scale score, and HIV-positive status. The AUC for mortality prediction was 0.82, and the authors estimated that 35% of children would be identified as high risk for mortality. Although the predictive model may not generalizable to more developed regions with different infectious disease patterns, this study exemplifies how region-specific predictors of post-discharge mortality may help to identify a vulnerable population for close follow-up to decrease long-term morbidity and mortality.

Bundled Approaches to Shock Recognition and Management

Recognition and management bundles are increasingly being used to enhance resuscitation of pediatric septic shock. Although a bundled approach has been emphasized for adult septic shock through the Surviving Sepsis Campaign for several decades, the application of these bundles to pediatric patients has been less pervasive. In the last five years, several studies have demonstrated that a bundled approach to shock recognition and management can increase adherence to guidelines, decrease time to therapy, and improve outcomes in pediatric septic shock (10, 31, 32). For example, Paul and colleagues showed that improved adherence to a 5-component sepsis bundle that included timely (1) recognition of septic shock, (2) vascular access, (3) administration of intravenous bolus fluid, (4) antibiotics, and (5) vasoactive agents (when necessary) within 60 minutes was associated with a decrease in mortality from 5 to 2 percent (33).

More recently, Balamuth and colleagues compared the sensitivity and specificity of routine physician judgment versus an automated electronic algorithmic alert to recognize children with severe sepsis/septic shock in a large academic pediatric emergency department (34). The electronic alert was based on vital signs, high-risk comorbid conditions, altered mentation, and abnormal perfusion. The electronic algorithmic alert was more sensitive (92.1%) than physician judgment (72.7%) but less specific, resulting in >3,000 false-positive sepsis activation alerts. The authors concluded that a routine alert embedded within the electronic health record may be best used to trigger a rapid bedside clinician assessment for sepsis in order to maximize sepsis recognition without overextending available resources. Similarly, Akcan Arikan and colleagues demonstrated that an electronic sepsis recognition alert combined with rapid clinician assessment and implementation of a protocolized resuscitation bundle was associated with a lower rate of AKI (54% pre-intervention versus 29% post-intervention) and mortality (8.3% versus 1.7%) (35). Along these lines, Tuuri et al. demonstrated that a similar approach using a paper-based septic shock screening tool at emergency department triage could also improve time to critical interventions when coupled with rapid bedside clinician assessment of positive screens for continuation of a septic shock resuscitation bundle (36). This may be a more feasible approach at smaller institutions with fewer information technology resources.
Two recent studies highlight the role that simulation can play in improving recognition and resuscitation of pediatric shock. Investigators from INSPIRE ImPACTs demonstrated high variability in adherence to pediatric guidelines across pediatric emergency department teams using a simulated case of an infant in septic shock (37). Notably, teams with greater composite experience achieved the highest guideline adherence, highlighting the importance of reiterative experience in shock management. Given the relatively low frequency of shock amongst pediatric acute illness, simulation may help to optimize bedside implementation of management bundles. Qian et al. demonstrated that repetitive simulation team training could effectively improve compliance with resuscitation bundles and reduce the time to critical interventions for children with septic shock (38).

Corticosteroid Use

Corticosteroid use is currently recommended in refractory septic shock, however, the benefit remains unproven and controversial. Wong et al compared gene expression in children with septic shock who did (n=70) and did not (n=110) receive corticosteroid therapy in a retrospective observational study (39). Notably, gene expression related to the adaptive immune response was down-regulated in both groups compared to normal controls, but to a greater extent in patients who received corticosteroids. While cause-and-effect cannot be determined from study, the authors raised concern that treatment with corticosteroids may repress adaptive immunity in patients with septic shock.

This group has also used gene expression to identify subclasses of patients with septic shock with different morbidity and mortality, but have now moved this technology closer to the bedside using a messenger RNA technology that can provide results on expression of the 100 subclass-defining genes in 8–12 hours (40). Using test and validation cohorts of children with septic shock, the authors were able to reliably assign patients to subclasses with different morbidity and mortality rates based on their gene expression profile using samples collected within the first 24 hours of PICU presentation with septic shock. Interestingly, Wong et al. also found that corticosteroids were associated with increased mortality in the higher-risk subclass of patients. The authors conclude that this technology has the potential to identify a subset of patients who may not respond favorably to adjunctive corticosteroid therapy.

FUTURE RESEARCH DIRECTIONS

The Lancet Commission on Research has laid the groundwork for a very thoughtful and ambitious agenda in sepsis research globally. Moreover, thoughtful commentaries on the research that is needed for neonates in resource poor areas as well as for the poorest in the world are exciting new developments that may change our understanding and approaches to sepsis in the next few years (41, 42). The authors emphasize the disappointing reality that, despite numerous promising drugs, there remain no specific anti-sepsis treatments and management relies mainly on recognition and aggressive organ support. In resource rich countries, unraveling the pathobiology of sepsis and ensuring earlier recognition will take precedence, while in resource poor countries, creative solutions to implement basic life-
saving resuscitative therapies and antibiotics is the priority. Innovation in sepsis care as well as in adaptive clinical trial design will be increasingly important.

CONCLUSIONS

There have been a remarkable number of recent studies in the field of pediatric shock recognition and management, although research has largely centered on severe sepsis and septic shock. The notable breadth of international contributions in this field is particularly enlightening given the global public health impact of sepsis and shock on children. While there has been significant progress in the understanding of sepsis epidemiology and use of extracorporeal therapies in critically ill children with sepsis, the role of hyperlactatemia and risk stratification in pediatric septic shock, and the optimal timing of antibiotic administration, more work is clearly needed. Importantly, the consistent theme of a beneficial role for a bundled approach to septic shock recognition and management to improve both care and outcomes should drive their inclusion into future updates of pediatric shock guidelines. A roadmap to relevant research offers possibilities to improve knowledge and outcomes.

References

