Astragalus-containing Traditional Chinese Medicine, with and without prescription based on syndrome differentiation, combined with chemotherapy for advanced non-small-cell lung cancer: a systemic review and meta-analysis

S.F. Wang MD,†‡ Q. Wang MD,‡ L.J. Jiao MD,‡ Y.L. Huang MD,† D. Garfield MD PhD,§ J. Zhang MD,†‡ and L. Xu MD‡

ABSTRACT

Objective Traditional Chinese Medicine (TCM) is used in China as part of the treatment for non-small-cell lung cancer (NSCLC) and often includes prescription of herbal therapy based on syndrome differentiation. Studies of various Astragalus-based Chinese medicines combined with platinum-based chemotherapy in the treatment of lung cancer are popular in East Asia, particularly in China. The aim of the present study was to perform a systematic review and meta-analysis comparing platinum-based chemotherapy alone with platinum-based chemotherapy plus Astragalus-based Chinese botanicals, with and without prescription based on syndrome differentiation, as first-line treatment for advanced NSCLC.

Methods We searched the Chinese Biomedical Literature database, the China National Knowledge Internet, the VIP Chinese Science and Technology Periodicals Database, PubMed, EMBASE, the Cochrane databases, and abstracts presented at meetings of the American Society of Clinical Oncology, the World Conference on Lung Cancer, the European Society for Medical Oncology, and the Chinese Society of Clinical Oncology for all eligible studies. Endpoints were overall survival; 1-year, 2-year, and 3-year survival rates; performance status; overall response rate; and grade 3 or 4 adverse events. Subgroup analyses based on herbal formulae individualized using syndrome differentiation or on oral or injection patent medicines were performed using the Stata software application (version 11.0: StataCorp LP, College Station, TX, U.S.A.) and a fixed-effects or random-effects model in case of heterogeneity. Results are expressed as a hazard ratio (HR) or relative risk (RR), with corresponding 95% confidence intervals (CIs).

Results Seventeen randomized studies with scores on the Jadad quality scale of 2 or more, representing 1552 patients, met the inclusion criteria. Compared with platinum-based chemotherapy alone, the addition of Astragalus-based TCM to chemotherapy was associated with significantly increased overall survival (HR: 0.61; 95% CI: 0.42 to 0.89; p = 0.011); 1-year (RR: 0.73; 95% CI: 0.65 to 0.82; p < 0.001), 2-year (RR: 0.3344; 95% CI: 0.237 to 0.4773; p < 0.001), and 3-year survival rates (RR: 0.30; 95% CI: 0.17 to 0.53; p < 0.001); performance status (RR: 0.43; 95% CI: 0.34 to 0.55; p < 0.001); and tumour overall response rate (RR: 0.7982; 95% CI: 0.715 to 0.89; p < 0.001). Subgroup analyses indicated that Astragalus herbal formulae given based on syndrome differentiation were more effective than Astragalus-based oral and injection patent medicines. Side effects—including anemia, neutropenia, thrombocytopenia, fatigue, poor appetite, nausea, and vomiting—were significantly more frequent with platinum-based chemotherapy alone than when platinum-based chemotherapy was combined with Astragalus-based TCM.

Correspondence to: Jie Zhang, Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, 270 Dong’an Road, Shanghai 200032 P.R.C. or Ling Xu, Department of Oncology, Longhua Hospital, 725 South Wanping Road, Shanghai 200032 P.R.C.
E-mail: zhangjiec2289@hotmail.com or xulq67@aliyun.com DOI: http://dx.doi.org/10.3747/co.23.2920
Cancers of the lung and bronchus are the most common causes of cancer death. The overall 5-year survival rate (SR) for patients with non-small-cell lung cancer (NSCLC) is about 17.1%. Among NSCLC patients, those with advanced-stage disease are treated with standard therapies such as chemotherapy alone (20%), radiation therapy alone (17%), or a combination of the two (35%)\(^1\)–\(^3\). All such therapies have both high toxicity and limited efficacy.

East Asian populations, particularly those in China, commonly use herbal medicines [Traditional Chinese Medicine (TCM)] combined with chemotherapy in an effort to reduce toxicity and preserve the highest possible quality of life in lung cancer. Of particular interest in this respect is the herb Astragalus membranaceus. A retrospective review\(^4\) demonstrated that patients with NSCLC who used Chinese herbal formulae alone could live for more than 2 years with their disease. That study found that A. membranaceus was an ingredient in 172 of the 200 analyzed Chinese herbal formulae. In vitro analysis has shown that Astragalus increases resistance to the immunosuppressive effects of chemotherapy drugs and stimulates macrophages to produce interleukin-6 and tumour necrosis factor\(^5,\)\(^6\).

Syndrome differentiation is the process of comprehensively analyzing clinical information obtained using the 4 main diagnostic TCM procedures: observation, listening, questioning, and pulse analyses. Syndromes can include yin, yang, exterior, interior, cold, heat, deficiency, and excess. Syndrome differentiation is used to guide the choice of TCM treatment with acupuncture and herbal formulae. Otherwise, because of convenience, oral and injection patent medicines containing chemicals extracted from Chinese herbs are also widely and empirically used by Chinese families and hospitals without a formal TCM clinical evaluation for specific syndrome differentiation\(^7\).

A number of randomized controlled trials have evaluated various Astragalus-based Chinese medicines combined with platinum-based chemotherapy in the treatment of lung cancer. A meta-analysis by McCullough and colleagues\(^8\) found that Astragalus-based Chinese herbal medicine can increase the effectiveness of platinum-based chemotherapy. However, an updated comprehensive review of TCM in the treatment of advanced NSCLC has yet to be performed. In the present study, we systematically evaluated the results of selected randomized controlled trials to elucidate whether TCM treatment based on syndrome differentiation is more effective than Astragalus-based therapy without such a formal evaluation.

METHODS

Search Strategy We searched the PubMed (1966 to March 2014), EMBASE (1974 to March 2014), Chinese Biomedical Literature (1978 to March 2014), China National Knowledge Internet (1979 to March 2014), and Cochrane (1988 to March 2014) databases for relevant articles, using the key words non-small-cell lung cancer, NSCLC, Astragalus or Chinese herb, first-line, and carboplatin- or cisplatin-based chemotherapy. We also searched papers and abstracts presented at American Society of Clinical Oncology (to 2014), World Congress of Lung Cancer (to 2014), European Society of Medical Oncology (to 2014), and Chinese Society of Clinical Oncology (to 2014) meetings.

Eligibility Criteria Relevant clinical trials were manually selected when they met these criteria:

- Study patients had NSCLC previously untreated by chemotherapy alone
- The study was a comparison of platinum-based chemotherapy alone or with Astragalus-based herbal therapy (with or without TCM syndrome differentiation) in the first line
- The study had sufficient data, especially survival data, for extraction
- The study scored 2 or better on the Jadad quality scale

Systematic reviews and meta-analysis were excluded.

Data Extraction and Validity Assessment Data extracted from eligible articles for analysis had to include the overall survival (OS) rate\(^9\); the 1-year, 2-year, and 3-year SRs; performance status (PS); overall response rate (ORR); and percentage of patients experiencing grades 3 and 4 toxicities. We also extracted basic data in the form of the first author’s name, the year of publication, lung cancer stages, and number of patients. The screening and review were performed by 2 independent reviewers searching the literature and extracting data independently. Mismatches between reviewers were resolved by consensus after a 3rd check and discussion between the reviewers\(^10\).

Statistical Analysis Outcomes considered were the 1-, 2-, and 3-year SRs; Karnofsky PS; ORR; and significant adverse events. Relative risk (RR) estimates were calculated using the Stata software.
Astragalus-containing TCM combined with chemotherapy in advanced NSCLC, Wang et al.

RESULTS

Study Selection

The initial search, performed in March 2014, found 372 articles. Titles and abstracts were screened, and 178 articles were excluded because they did not meet the inclusion criteria; the remaining 194 full-text articles were reviewed for inclusion. Subsequently, 142 articles were excluded because of a lack of sufficient survival data for extraction, and 34 articles were excluded because of inferior quality. In the end, seventeen clinical trials (1552 patients) reported in full-text publication were eligible. One clinical trial was designed to use Astragalus alone combined with chemotherapy; the other sixteen were designed to use TCM containing Astragalus as the principal drug together with chemotherapy. The quantitative 5-point Jadad scale was used to assess the quality of the included trials (Figure 1, Table 1).

It is important to note that, in the included studies, Astragalus-based herbal formulae were developed based on syndrome differentiation and were prescribed by an authorized and experienced chief physician, with the herbal dosages being based on the Chinese pharmacopoeia.

Once the diagnosis is made, the appropriate formula is prescribed and decocted (Chinese drug decoction has 3 steps: soaking, decocting, and concentrating). The formula is given twice daily. For patent oral and injection medicines, use must be based on the manufacturer's instructions; administration is not based on syndrome differentiation.

Publication Bias

Neither the Begg funnel plot (p = 0.591 for ORR) nor the Egger test (p = 0.089 for 1-year ORR; p = 0.383 for 2-year ORR; p = 0.113 for PS; p = 0.075 for ORR) revealed any obvious asymmetry in the included trials.

ORR

Five of the included trials (549 patients) reported OS. Pooled HR for OS favoured the combination of an Astragalus-based formula with chemotherapy over chemotherapy alone (HR: 0.61; 95% CI: 0.42 to 0.89; p = 0.011). Subgroup analyses showed that OS was significantly improved in the arms using an Astragalus-based herbal formula (HR: 0.40; 95% CI: 0.26 to 0.61; p < 0.001), but not in those using an Astragalus-based injection (HR: 0.80; 95% CI: 0.59 to 1.10; p = 0.169; Figure 2).

One-Year SR

Fourteen trials (1409 patients) reported 1-year SRs. Using a fixed-effects model, the pooled HR for 1-year SR favoured the combination of an Astragalus-based product and chemotherapy over chemotherapy alone (HR: 0.73; 95% CI: 0.65 to 0.82; p < 0.001). Subgroup analysis showed that the 1-year SR was slightly improved by Astragalus-based oral patent medicines (HR: 0.80; 95% CI: 0.65 to 0.97; p = 0.025), but more so by Astragalus-based herbal formulae based on syndrome differentiation (HR: 0.56; 95% CI: 0.46 to 0.70; p < 0.001; Figure 3A). However, Astragalus-based injection was not associated with an improved 1-year SR (HR: 0.87; 95% CI: 0.71 to 1.06; p = 0.159).

Two-Year SR

Five trials (533 patients) reported 2-year SRs. Using a fixed-effects model, the pooled HR for 2-year SR favoured the combination of an Astragalus-based product and chemotherapy over chemotherapy alone (HR: 0.33; 95% CI: 0.23 to 0.47; p < 0.001). Subgroup analyses showed that the 2-year SR was slightly improved by Astragalus-based injection (HR: 0.56; 95% CI: 0.36 to 0.87; p = 0.01) and significantly improved with Astragalus-based herbal formulae (HR: 0.20; 95% CI: 0.11 to 0.36; p < 0.001; Figure 3B).

Three-Year SR

Three trials (360 patients) reported 3-year SRs. Using a fixed-effects model, the pooled HR for 3-year SR favoured the combination of an Astragalus-based product and chemotherapy over chemotherapy alone (HR: 0.30; 95% CI: 0.17 to 0.53; p < 0.001). Subgroup analyses were not available because of limited data (Figure 3C).

Karnofsky PS

Eight trials reported Karnofsky PS data. Using a fixed-effects model, the pooled HR for PS favoured the combination of an Astragalus-based product and chemotherapy
TABLE I Characteristics of seventeen published clinical trials included in the meta-analysis

<table>
<thead>
<tr>
<th>Reference</th>
<th>TNM stage</th>
<th>Pts (n)</th>
<th>Study arm</th>
<th>Median OS</th>
<th>Survival rate (%)</th>
<th>ORR (%)</th>
<th>Karnofsky PS</th>
<th>Jadad score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liu et al., 1997</td>
<td>II, 52</td>
<td>Mitomycin–doxorubicin–cisplatin plus Jifukang Oral Solution<sup>a</sup></td>
<td>NA</td>
<td>67.7</td>
<td>47.7</td>
<td>NA</td>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td>Liu et al., 2001</td>
<td>II, 80</td>
<td>Mitomycin–doxorubicin–cisplatin plus Astragalus-based formulae</td>
<td>12.1</td>
<td>71.9</td>
<td>46.4</td>
<td>29.2</td>
<td>87.5</td>
<td>32.5</td>
</tr>
<tr>
<td>Liu et al., 2004</td>
<td>III, 48</td>
<td>Hydroxy camptothecin–etoposide–platinum plus Bo Er Ning capsules<sup>b</sup></td>
<td>10.5</td>
<td>56.5</td>
<td>NA</td>
<td>NA</td>
<td>43.5</td>
<td>NA</td>
</tr>
<tr>
<td>Liu et al., 2001</td>
<td>III, 64</td>
<td>vs. mitomycin–doxorubicin–cisplatin</td>
<td>8.3</td>
<td>37.6</td>
<td>13.7</td>
<td>9.8</td>
<td>71.8</td>
<td>9.4</td>
</tr>
<tr>
<td>Luo et al., 2005</td>
<td>II, 36</td>
<td>Vinorelbine–cisplatin plus Aidi injection<sup>c</sup></td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>52.8</td>
<td>NA</td>
<td>2</td>
</tr>
<tr>
<td>Luo et al., 2005</td>
<td>III, 36</td>
<td>vs. vinorelbine–cisplatin</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>36.1</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Lv et al., 2005</td>
<td>III, 48</td>
<td>Doxorubicin–cyclophosphamide–cisplatin plus Aidi injection<sup>c</sup></td>
<td>20</td>
<td>87.5</td>
<td>56.3</td>
<td>33.3</td>
<td>75</td>
<td>2</td>
</tr>
<tr>
<td>Lv et al., 2005</td>
<td>IV, 48</td>
<td>vs. doxorubicin–cyclophosphamide–cisplatin</td>
<td>8</td>
<td>60.4</td>
<td>29.2</td>
<td>12.5</td>
<td>47</td>
<td>NA</td>
</tr>
<tr>
<td>Luo et al., 2006</td>
<td>IIIB, 25</td>
<td>Paclitaxel–cisplatin plus sheng fu zhuang injection<sup>b</sup></td>
<td>10.2</td>
<td>47</td>
<td>NA</td>
<td>NA</td>
<td>48</td>
<td>36</td>
</tr>
<tr>
<td>Luo et al., 2006</td>
<td>IV, 25</td>
<td>vs. paclitaxel–cisplatin</td>
<td>9.3</td>
<td>41</td>
<td>NA</td>
<td>NA</td>
<td>40</td>
<td>16</td>
</tr>
<tr>
<td>Luo et al., 2007</td>
<td>IIIB, 30</td>
<td>Paclitaxel–cisplatin plus sheng fu zhuang injection<sup>b</sup></td>
<td>NA</td>
<td>71.5</td>
<td>NA</td>
<td>NA</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Luo et al., 2007</td>
<td>IV, 30</td>
<td>vs. paclitaxel–cisplatin</td>
<td>NA</td>
<td>52.6</td>
<td>NA</td>
<td>NA</td>
<td>50</td>
<td>16.7</td>
</tr>
<tr>
<td>Fan et al., 2008</td>
<td>IIIB, 26</td>
<td>Vinorelbine–cisplatin plus Aidi injection<sup>c</sup></td>
<td>10.7</td>
<td>42</td>
<td>NA</td>
<td>NA</td>
<td>46</td>
<td>NA</td>
</tr>
<tr>
<td>Fan et al., 2008</td>
<td>IV, 26</td>
<td>vs. vinorelbine–cisplatin</td>
<td>9.4</td>
<td>38</td>
<td>NA</td>
<td>NA</td>
<td>42</td>
<td>NA</td>
</tr>
<tr>
<td>Xu et al., 2008</td>
<td>IIIB, 49</td>
<td>Vinorelbine–cisplatin plus Aidi injection<sup>c</sup></td>
<td>11.6</td>
<td>47</td>
<td>22</td>
<td>NA</td>
<td>38.8</td>
<td>NA</td>
</tr>
<tr>
<td>Xu et al., 2008</td>
<td>IV, 47</td>
<td>vs. vinorelbine–cisplatin</td>
<td>10.1</td>
<td>42</td>
<td>15</td>
<td>NA</td>
<td>31.9</td>
<td>NA</td>
</tr>
<tr>
<td>Zhang et al., 2008</td>
<td>IIIB, 41</td>
<td>Gemcitabine–cisplatin plus Aidi injection<sup>c</sup></td>
<td>NA</td>
<td>64.1</td>
<td>NA</td>
<td>NA</td>
<td>48.8</td>
<td>79.5</td>
</tr>
<tr>
<td>Zhang et al., 2008</td>
<td>IV, 37</td>
<td>vs. gemcitabine–cisplatin</td>
<td>NA</td>
<td>37.1</td>
<td>NA</td>
<td>NA</td>
<td>40.5</td>
<td>42.9</td>
</tr>
<tr>
<td>Zhang et al., 2009</td>
<td>III, 30</td>
<td>Docetaxel–cisplatin</td>
<td>NA</td>
<td>73.3</td>
<td>NA</td>
<td>NA</td>
<td>60</td>
<td>18</td>
</tr>
<tr>
<td>Zhang et al., 2009</td>
<td>IV, 28</td>
<td>plus Zhen Qi Fu Zheng capsules<sup>d</sup></td>
<td>NA</td>
<td>53.6</td>
<td>NA</td>
<td>NA</td>
<td>50</td>
<td>4</td>
</tr>
<tr>
<td>Zhao et al., 2009</td>
<td>IIIB, 43</td>
<td>Vinorelbine–cisplatin plus Aidi injection<sup>c</sup></td>
<td>10.5</td>
<td>NA</td>
<td>NA</td>
<td>55.8</td>
<td>55.1</td>
<td>NA</td>
</tr>
<tr>
<td>Zhao et al., 2009</td>
<td>IV, 40</td>
<td>vs. vinorelbine–cisplatin</td>
<td>9.7</td>
<td>NA</td>
<td>NA</td>
<td>47.5</td>
<td>34.2</td>
<td>NA</td>
</tr>
<tr>
<td>Xu et al., 2010</td>
<td>III, 62</td>
<td>Vinorelbine–cisplatin or gemcitabine–cisplatin or mitomycin C–vinblastine–cisplatin plus Astragalus-based formulae</td>
<td>14.5</td>
<td>54.8</td>
<td>24.6</td>
<td>13.2</td>
<td>28.3</td>
<td>NA</td>
</tr>
<tr>
<td>Xu et al., 2010</td>
<td>IV, 58</td>
<td>vs. vinorelbine–cisplatin</td>
<td>11</td>
<td>35.6</td>
<td>3.7</td>
<td>0</td>
<td>18.2</td>
<td>NA</td>
</tr>
<tr>
<td>Yang et al., 2010</td>
<td>IIIB, 30</td>
<td>Gemcitabine–cisplatin plus kangai injection<sup>e</sup></td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>33.3</td>
<td>63.3</td>
<td>2</td>
</tr>
<tr>
<td>Yang et al., 2010</td>
<td>IV, 30</td>
<td>vs. gemcitabine–cisplatin</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>30</td>
<td>36.7</td>
<td>NA</td>
</tr>
<tr>
<td>Chen et al., 2012</td>
<td>IIIB, 42</td>
<td>Gemcitabine–cisplatin</td>
<td>NA</td>
<td>33.3</td>
<td>NA</td>
<td>NA</td>
<td>57.1</td>
<td>2</td>
</tr>
<tr>
<td>Chen et al., 2012</td>
<td>IV, 42</td>
<td>plus Zhen Qi Fu Zheng capsules<sup>d</sup></td>
<td>NA</td>
<td>31</td>
<td>NA</td>
<td>NA</td>
<td>52.4</td>
<td>NA</td>
</tr>
</tbody>
</table>
TABLE I Continued

<table>
<thead>
<tr>
<th>Reference</th>
<th>TNM stage</th>
<th>Pts (n)</th>
<th>Study arm</th>
<th>Median OS (months)</th>
<th>Survival rate (%)</th>
<th>ORR (%)</th>
<th>Karnofsky PS (%)</th>
<th>Jadad score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guo et al., 2012a,g</td>
<td>III, IV</td>
<td>68, 68</td>
<td>Vinorelbine–cisplatin plus Astragalus injection</td>
<td>10.7, 10.2</td>
<td>32.4, 35.3</td>
<td>NA, NA</td>
<td>42.6, 36.8</td>
<td>3, 4</td>
</tr>
<tr>
<td>Xie et al., 2012b</td>
<td>III, IV</td>
<td>102, 98</td>
<td>Gemcitabine–cisplatin plus Astragalus-based formulae</td>
<td>NA, NA</td>
<td>54.5, 34.1</td>
<td>NA, NA</td>
<td>NA, NA</td>
<td>NA, NA</td>
</tr>
</tbody>
</table>

a Jinfukang Pharmaceutical, Jilin, P.R.C.
b Livzon Pharmaceutical Group, Guangdong, P.R.C.
c Guizhou Yibai Pharmaceutical, Guizhou, P.R.C.
d Fuzheng Pharmaceutical Co. Ltd, Gansu, P.R.C.
e Changbaishan Pharmaceutical, Jilin, P.R.C.
f Traditional Chinese Medicine containing Astragalus only.

Pts = patients; OS = overall survival; ORR = overall response rate; PS = performance status; NA = not applicable.

over chemotherapy alone (RR: 0.43; 95% CI: 0.34 to 0.55; p < 0.001). Subgroup analyses showed that PS was significantly improved with the use of an Astragalus-based patent medicine (RR: 0.24; 95% CI: 0.09 to 0.62; p = 0.003), an Astragalus-based herbal formula based on syndrome differentiation (RR: 0.30; 95% CI: 0.15 to 0.61; p = 0.001), and the Astragalus-based injection (RR: 0.51; 95% CI: 0.40 to 0.66; p < 0.001; Figure 4).

Tumour ORR

The Response Evaluation Criteria in Solid Tumors defines tumour ORR as the sum of the partial and complete response rates. Twenty-six trials included ORR data. Using a fixed-effects model, the pooled ORR data significant in favour of the combination of an Astragalus-based product and chemotherapy over chemotherapy alone (RR: 0.79; 95% CI: 0.71 to 0.89; p < 0.001). In addition, the subgroup analyses showed that the tumour ORR was significantly improved with the Astragalus-based herbal formula based on syndrome differentiation (RR: 0.75; 95% CI: 0.62 to 0.90; p = 0.002) and with the Astragalus-based injection (RR: 0.80; 95% CI: 0.68 to 0.93; p = 0.004), but not with the Astragalus-based oral patent medicines (RR: 0.85; 95% CI: 0.65 to 1.11; p = 0.234).

Safety

Adverse events were evaluated using the U.S. National Cancer Institute’s Common Toxicity Criteria, version 2, or its Common Terminology Criteria for Adverse Events (version 3). Fourteen trials reported grades 3 and 4 toxicities. Compared with the combination of an Astragalus-based product and platinum-based chemotherapy, platinum-based chemotherapy alone was associated with more toxicities (anemia, neutropenia, thrombocytopenia, fatigue, poor appetite, nausea, and vomiting were significantly more frequent with platinum-based chemotherapy alone than with the combination of an Astragalus-based product and chemotherapy.

Astragalus occupies an important place in the TCM system. It has been used for almost all diseases caused by chi deficiency, which is associated with cellular immune dysfunction. Chi is understood to be the vital energy that maintains blood circulation, warms the body, and fights diseases. In cancer patients, chi deficiency is the most common symptom according to the concept of TCM. Symptoms of chi deficiency include fatigue, lack of appetite, and depression.

Our meta-analysis demonstrates the potential clinical efficacy of Astragalus-based TCM combined with platinum-based chemotherapy in the treatment of advanced NSCLC. Treatment based on syndrome differentiation is a characteristic of TCM diagnosis and treatment. Herbal formulae prescribed by syndrome differentiation can be different

FIGURE 2 Forest plot of overall survival after treatment with Astragalus and platinum-based chemotherapy compared with platinum-based chemotherapy alone. Subgroups consider oral and injection herbal formulae containing Astragalus. h = hazard ratio; CI = confidence interval.
ASTRAGALUS-CONTAINING TCM COMBINED WITH CHEMOTHERAPY IN ADVANCED NSCLC, Wang et al.

for each patient, as is typical of TCM. In the TCM system, patients are prescribed botanicals based on specific individual variations. Chinese patent medicines and injections generally consist of extracted and condensed elements of herbs in the form of pills, capsules, electuaries, or injectable liquids; they are not based on individual syndrome differentiation. Our study is hypothesis-generating, in that, compared with Astragalus-based oral and injection patent medicines, Astragalus-containing herbal formulae based on syndrome differentiation were associated with enhanced efficacy and tolerability of platinum-based chemotherapy in patients with NSCLC.

Several limitations have to be considered when interpreting our results. First, the data extracted from the included publications were not individual patient data; they did not include tumour molecular analysis; and no single TCM provider evaluated all patients. A meta-analysis based on individual patient data, with their associated molecular, clinical, and pathologic findings, would allow for a more firm conclusion. Second, none of the herbal formulae or TCM practices used in the included studies are specific or reproducible. The study populations were limited to East Asian patients, and the results require replication in other patients from varied backgrounds. Additional high-quality, controlled, and reproducible randomized controlled trials are warranted; the results reported here should be seen as hypothesis-generating only.

CONCLUSIONS

The relatively low success rates in the treatment of advanced and metastatic NSCLC have prompted the scientific

FIGURE 4 Forest plot of improvement in performance status after treatment with Astragalus and platinum-based chemotherapy compared with platinum-based chemotherapy alone. Subgroups consider oral use of the herb, of a prescribed Astragalus-based patent medicine, or of Astragalus-based injections. RR = relative risk; CI = confidence interval.

FIGURE 3 Meta-analyses (forest plots) of the seventeen studies assessing survival rates after treatment with Astragalus and platinum-based chemotherapy compared with platinum-based chemotherapy alone in non-small cell lung cancer. (A) 1-Year survival. (B) 2-Year survival. (C) 3-Year survival. Subgroups consider oral use of the herb, of a prescribed Astragalus-based patent medicine, or of Astragalus-based injections. RR = relative risk; CI = confidence interval.
community to adopt novel and innovative approaches in seeking more effective and less toxic treatment regimens. Astragalus-based Chinese herbal formulations, especially when based on individualized tcm evaluation with its resultant syndrome differentiation, could potentially offer an avenue for future study.

ACKNOWLEDGMENTS
This work was supported, in part, by these funders: Special Scientific Research for Traditional Chinese Medicine (no. 201307006, 2013); National Clinical Sites Project for tcm, Longhua Medical Project (LYTD-25); Shanghai Science and Technology Commission Foundation Key Project; Ministry of Education Returned Scientific Research Foundation; key project, Shanghai Municipal Science and Technology Commission Foundation (no. 14JC1401400); Trans-Century Training Programme for the Talents by the State Education Foundation (no. 14JC1401400); and Key Technology Support Project of the Field of Medicine and Agriculture Science, Shanghai Municipal Science and Technology Commission Foundation (no. 15411951602).

CONFLICT OF INTEREST DISCLOSURES
We have read and understood Current Oncology’s policy on disclosing conflicts of interest, and we declare that we have none.

AUTHOR AFFILIATIONS
1Department of Thoracic Surgery, Fudan University Shanghai Cancer Center; 2Department of Oncology, Shanghai Medical College, Fudan University, and 3Department of Oncology, Longhua Hospital, Shanghai, P.R.C.; 4University of Colorado Comprehensive, Aurora, CO, U.S.A.

REFERENCES
18. Liu W. Clinical observation concerning Boer Ning capsules combined with HEP regimen in the treatment of elderly pa-

TABLE II

Adverse event	Trials (n)	Patients (n events/total population) by trial arm	Heterogeneity	RR	95% CI	p Value
	Chemotherapy with Astragalus-based therapy	Chemotherapy alone				
Anemia	6	12/283 24/277	0.395	3.4	0.52	0.28 to 0.99
Neutropenia	14	100/632 201/613	0.524	0	0.48	0.39 to 0.59
Thrombocytopenia	7	16/298 43/296	0.756	0	0.38	0.22 to 0.65
Fatigue	3	30/219 56/213	0.405	0	0.52	0.36 to 0.77
Appetite	3	36/177 799/177	0.579	0	0.46	0.33 to 0.64
Nausea and vomiting	12	33/500 90/485	0.339	10.8	0.37	0.26 to 0.53

a According to the U.S. National Cancer Institute’s Common Toxicity Criteria, version 2 or 3.
b By chi-square test.
RR = relative risk; CI = confidence interval.

