Expression of PCNA and CD44mRNA in colorectal cancer with venous invasion and its relationship to liver metastasis

Shu-Qiang Yue, Yan-Ling Yang, Ke-Feng Dou, Kai-Zong Li

Shu-Qiang Yue, Yan-Ling Yang, Ke-Feng Dou, Kai-Zong Li, Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China. Correspondence to: Kai-Zong Li, Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, 710032 Xi’an an, Shaanxi Province, China. gdwk@fmmu.edu.cn. Received: 2003-05-13 Accepted: 2003-06-02

INTRODUCTION

Many mechanisms are involved in liver metastasis of colorectal cancer, of which venous invasion is considered to be the chief process[11,12]. Previous studies showed that the degree of venous invasion was positively related to the rate of liver metastasis. But it is unknown which factors participate in liver metastasis of colorectal cancer. PCNA is a chief marker reflecting the activity of cell proliferation, which is closely related to invasion and metastasis of malignant neoplasms and their prognosis[7-10]. Cell adhesion molecules (CAMs) correlate to the invasion and metastasis of tumor cells, and play an important role in occurrence, development and metastasis of neoplasms[11,12]. The goal of this study was to test the expression of PCNA and adhesion molecule CD44mRNA in colorectal cancer with venous invasion by RT-PCR and its relationships with liver metastasis.

MATERIALS AND METHODS

Materials

According to the pathological diagnosis standards, the severity of venous invasion was classified as V0-V3[13]. Thirty-one patients with severe venous invasion of colorectal cancer in V3 stage were chosen as study subjects (male 20, female 11), aged 44-82 years (average 66 years), of them 17 cases had liver metastasis. After operations, neoplasm samples were kept in liquid nitrogen. RNA extract reagent was purchased from Gibco Co., Taq enzyme from Takara Co., PCNA, CD44mRNA and β-actin primer were synthesized by BoYa Shanghai Co.. PCNA’s sequence of up-stream primer was 5’-GCCGAGATC-TCAAGCATATT-3’, that of down-stream primer was 5’-ATGTACTTAGGTACAAAT-3’. CD44’s sequence of up-stream primer was 5’-CTTTCATCCCCAGTGACC-3’, that of down-stream primer was 5’-TGCACTGTGGTATCAC-3’. β-actin’s sequence of up-stream primer was 5’-ACACATGATCCCTGGCATTG-3’, that of down-stream primer was 5’-TAACCGAATGATGTAGAGT-3’. The size of anticipatively amplified products was 452 bp, 446 bp and 243 bp, respectively.

Methods

Using TRIZol reagent kit, total RNA was extracted according to the method previously described[14-20]. The purity and content of RNA were measured by a spectrophotometer, and kept at -80 °C. Total RNA 5 µg, 5 reaction buffer 10 µl, 10 mmol·L-1 dNTPs 5 µl, RNasin 20 U, oligo(dT) 0.25 µg, reverse transcriptase (M-MLV, Gibco) 200 U and 0.1 mol·L-1 DTT 0.5 µl were added to reaction volume of 50 µl, incubated at 37 °C for 1 h, then heated at 65 °C for 5 min to stop reaction. cDNA 0.1 µg, 10XPCR buffer 2.5 µl, 2 mmol·L-1 dNTPs 2.5 µl, 25 mmol·L-1 MgCl2, 2.5 µl, PCR primer 20 pmol and Taq DNA polymerase (Takara) 5 U were added to reaction volume of 2.5 µl. Using PTC-100 equipment (MJ Research), PCR conditions were as follows: pre-denaturing at 93 °C for 1 min, then 35 cycles at 93 °C for 30 s, at 52 °C for 30 s and 72 °C for 1 min, followed by extension at 72 °C for 8 min. Each amplified product of 10 µl was detected via 3 g·L-1 Sepharose electrophoresis, bromide staining, and analyzed by using a UVP gel imaging system and Labworks software. The ratio of density of positive PCNA and CD44 expression to that of β-actin was considered to be PCNA and CD44 relative expression quantity[21-28]. Expression intensity was classified into 3 grades: +: 1-30 % β-actin density, ++: 31-65 %, +++: 66-100 %.

Statistics

All the data were analyzed by χ2-test, and a value of P<0.05 was considered significant and P<0.01 very significant.

RESULTS

Expression of PCNA and CD44mRNA in colorectal cancer tissue

PCNA, CD44 and β-actin gene expressions were detected in colorectal cancer tissues by RT-PCR, the size of amplified fragment was coincident with that of anticipation (Figure 1). All cases had expression of PCNA, the positive rate was 100 %,
but the expression levels were different among different cases (Figure 1A). Twenty cases had positive expression of CD44 mRNA, the positive rate was 64.5%. The expression levels were different among different cases. As an inter-control, the expression level of β-actin was basically coincident among different cases (Figure 1C).

Figure 1 Expression of PCNA (A), CD44 (B) and β-actin (C) in colorectal cancer by PCR amplification. 1: DL2000 DNA marker (Takara), 2-7: Colorectal cancer tissues at various venous invasion stages.

Discussion

Venous invasion of cancer cells was the first step of neoplasm’s liver metastasis[29]. However, in clinical cases, venous invasion by histological detection was not definitely related to liver metastasis. It implies that, besides venous invasion, other factors might also participate in the process of liver metastasis[30-32].

PCNA is a kind of non-histone nuclear polypeptide with 36 000 molecular weight, as an assistant protein to DNA polymerase, its content could reflect the degree of cell proliferation[33-37]. Previous studies showed that there was a significant relationship between PCNA labelling and degree of malignancy, vessel invasion, distant metastasis and prognosis[38-42]. In this study, we found that under the condition of venous invasion, the strong expression rate of PCNA mRNA in venous invasion of colorectal cancer with liver metastasis, was significantly higher than that without liver metastasis. This showed that there was a positive relationship between the strong expression of PCNA and colorectal cancer with liver metastasis. All these indicate that colorectal cancer cells with higher proliferating activity are much more easier to proceed liver metastasis.

CD44 is a kind of cell adhesion molecules. Under normal conditions, CD44 acts as the receptor of hyaluronic acid, and chiefly participates in infra-cells and cell-stroma specific adhesion[43-46]. Recent studies showed that CD44 could be expressed in different neoplasm tissues. Bhatavedkar et al found that over-expression of CD44 was associated with clinical staging of colorectal cancer. Furthermore, positive expression of CD44 is an important prognostic factor associated with colorectal cancer patients’ relapse and total survival time. Further studies found that CD44 could make cancer cells be able to metastasize, adhere to vessel endothelium, accelerate cancer metastasis. We found that the strong expression rate of CD44 mRNA in colorectal cancer with liver metastasis was significantly higher than that without liver metastasis, further suggesting that CD44 might play an important role in colorectal cancer with liver metastasis. But it is still in argument whether CD44 can be taken as an independent marker for progress and metastasis of colorectal cancer.

We also found that under the condition of venous invasion in colorectal cancer patients with liver metastasis, the expression of PCNA and CD44mRNA was strong at the same time. All these indicate that there is a positive relationship between colorectal cancer with liver metastasis and expression of PCNA and CD44mRNA (r=0.82, P<0.01). Moreover, in colorectal cancer tissue with strong expression of CD44mRNA, PCNA mRNA was significantly higher than that with weak or negative expression, showing that there was a positive relationship between the expressions of CD44 and PCNA (r=0.67, P<0.05). Taken together, we conclude that detection of PCNA and CD44 expression in colorectal cancer may be useful for evaluating liver metastasis of cancer cells.

References

Yue SQ et al. PCNA and CD44 expression in colorectal cancer with liver metastasis

2865

35 Jiang YA, Zhang YY, Luo HS, Xiong SF. Mam cell density and the context of clinicopathological parameters and expression of p15, estrogen receptor, and proliferating cell nuclear antigen in gastric carcinoma. World J Gastroenterol 2002; 8: 1005-1008

37 Qin LX, Tang ZY. The prognostic molecular markers in hepatocellular carcinoma. World J Gastroenterol 2002; 8: 385-392

Edited by Zhang JZ and Wang XL