post right upper lobectomy due to adenocarcinoma. He suddenly complained of cough and chest burning with dull presentation. The cough produced brown sputum but no blood. He attributed his cough to exposure to cold since he was a fisherman but denied any history of respiratory symptoms. He had no history of tuberculosis or contact with infected persons. He denied a history of severe lung infection, asthma, sinus disease, or overseas travel. His physical examination was notable with no abnormal signs, oxygen saturation of 98% on room air. In general, he was thin, although well in appearance, and not visibly short of breath. His lungs were clear to auscultation. Laboratory studies and urinalysis were normal. A chest radiograph showed a 3-cm by 2-cm mass with a surrounding cavity in the right upper lobe. A subsequent chest CT scan showed a 3-cm by 4-cm cavity in the right upper lobe, with surrounding infiltrates as mass within the cavity suspicious for a fungus ball. Since galactomannan antigen was found negative. Bronchoalveolar lavage material from right median lobe cultured S. apiospermum and patient started voriconazole therapy for 3 months with no toxicity noticed. His recent imaging and bronchoscopic evaluation was with no evidence of fungal infection.

Conclusions: This report presents the first imaging report of lung scedosporiosis. Prompt identification is critical because of its resistance to most antifungal drugs. Its histopathology features are indistinct and overlap with those of more commonly recognized hyalohyphomycetes such as Aspergillus. Cultures from infected tissue are generally required for correct identification. Clinicians and pathologists must be familiar with this organism and recognize the need for culture studies in addition to histopathology in the evaluation of specimens from immunocompromised patients with suspected fungal infection.

Keywords: Lung cancer; pathogen

do: 10.3978/j.issn.2218-6751.2014.AB053

P42. Multiple neoplasms consist of lung cancer and hematological malignancies

Kazuhiko Natori1, Susumu Ishihara1, Daisuke Nagase1, Akiko Sakai1, Motohiro Kato1, Yasunobu Kuraishi1, Kazuho Arai2, Haruka Izumi1

1Division of Hematology and Oncology, Toho University Medical Center, Oota-ku, Japan; 2Toho University Faculty of Nursing, Oota-ku, Japan

Background: The lung cancer is a cancer of the most in Japan and first place in cause of death. Lung cancer still has poor prognosis with cure only in early clinical stage. Recently, new anti-cancer agent and molecular target agents are increased but clinical outcomes are not satisfied. We report that we reviewed 39 cases of multiple neoplasms with lung cancer and the hematological malignancies.

Methods: We intended for multiple neoplasms 298 cases including hematological malignancy. We reviewed 39 multiple neoplasms including the lung cancer. All patients were followed up until death or until December 2013. Survival was measured from the diagnosis of multiple cancer to time of death or last contact. Definition of the multiple neoplasms was in compliance with Warren & Gates. Also we determined the synchronous type and metachronous type in accordance with the definition of Moertel, so within less than 6 months was synchronous type, more than 6 months was metachronous type. About statistical examination, we used IBM SPSS statistics version 21.

Results: In total there are 39 cases, consisting of 30 males, nine females; type of multiple neoplasms: synchronous type 10 cases, metachronous type 29 cases. Number of multiple neoplasms: double neoplasms 20 cases, triple neoplasms 10 cases, quadruple neoplasms two cases. The median age was 70 years (range, 47-86 years). The counterpart of malignancies were: non-Hodgkin’s lymphoma 22 cases, myelodysplastic syndrome four cases, acute myelogeneous leukemia four cases, Hodgkin’s lymphoma two cases, macroglobulinemia one case, chronic lymphocytic leukemia two cases, chronic myelogeneous leukemia one case, acute lymphoblastic leukemia one case, monoclonal gammopathy of undetermined significance two cases. Other solid cancers were 14 cases. In double neoplasms, the median age of first diagnosis was 69 years and of the second cancer was 71 years. About interval between lung cancer and
hematological malignancies, lung cancer precedence case was 34 M, hematological malignancy precedence case was 51 M. The median overall survival was 13 M.

Conclusions: Diagnosis of lung cancer within 5 years was made in eight cases out of 17 cases. The important point is that 5 years are required for careful observation at the time of hematological malignancy diagnosis. We think that the prognosis is improved.

Keywords: Lung cancer; hematological malignancy

doi: 10.3978/j.issn.2218-6751.2014.AB054

P43. Therapy-related leukemia after lung cancer therapy

Kazuhiko Natori¹, Daisuke Nagas¹, Susumu Ishihara¹, Akiko Sakai¹, Motohiro Kato¹, Yasunobu Kuraishi¹, Kazuho Arai², Haruka Izumi¹

¹Division of Hematology and Oncology, Toho University Medical Center, Oota-ku, Japan; ²Toho University Faculty of Nursing, Oota-ku, Japan

Background: Therapy-related leukemia defined by the World health Organization 2008 classification scheme of hematolymphoid tumors including therapy-related acute myeloid neoplasms (t-AML), myelodysplastic syndrome (t-MDS). They occur as late complication of cytotoxic chemotherapy, radiation therapy and molecular target agents therapy against primary neoplasms. Recently, for lung cancer chemotherapy, new anti-cancer agent and molecular target agents are increased and more intensification chemotherapy performed. We report that we reviewed t-AML cases who survived from lung cancer and suffered t-AML.

Methods: We intended for multiple neoplasms 298 cases including hematological malignancy. We reviewed 39 multiple neoplasms including the lung cancer. In 39 cases, second neoplasms that were acute myeloid leukemia cases were two cases. All patients were followed up until death or until December 2013. Survival was measured from the diagnosis of multiple cancer to time of death or last contact. We investigated cytogenetic abnormality, therapy, clinical outcome, prognosis, and cause of death.

Results: There were four cases multiple neoplasms including lung cancer and acute myeloid leukemia. In four cases, metachronous type and primary neoplasms that were lung cancer were two cases. These two cases were diagnosed therapy-related leukemia by WHO 2008 classification. Two of cases were male and female one respectively, primarily diagnosis were small cell carcinoma (male case), squamous carcinoma (female case). Previous cases, he treated operation and radiotherapy, another cases treated operation and chemotherapy that included cisplatin and camptotecin. One case (male case) was acute promyelocytic leukemia (t-APL) that had t(15;17) and PMLRARα, another case (female case) was M2 type (French-American-British Classification) that indicated t(8;21) abnormality. About t-APL, he treated by all-trans retinoic acid and he reached complete response. T-M2 type, he treated by chemotherapy included daunorubicin and Ara-C(DC3-7), she did not achieve complete response. About prognosis, t-APL case, he lived 1 month after complete response, he died by lung cancer, t-AML cases, she lived 25 months after partial response, she died by t-AML relapse and refractory for salvage chemotherapy.

Conclusions: As the number of lung cancer survivors increased due to improvement in chemotherapy, clinician must more take attention of therapy-related leukemia and myelodysplastic syndrome by previous treatments.

Keywords: Lung cancer; leukemia