Pharmacokinetics, Pharmacodynamics, and Allometric Scaling of Chloroquine in a Murine Malaria Model

Brioni R. Moore, Madhu Page-Sharp, Jillian R. Stoney, Kenneth F. Ilett, and Kevin T. Batty

School of Pharmacy, Curtin University, Bentley, Western Australia, Australia; School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia; Clinical Pharmacology and Toxicology Laboratory, Path West Laboratory Medicine, Nedlands, Western Australia, Australia; School of Biomedical Sciences, Curtin University, Bentley, Western Australia, Australia; and Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia

Received 18 January 2011/Returned for modification 4 March 2011/Accepted 30 May 2011

Chloroquine (CQ) is an important antimalarial drug for the treatment of special patient groups and as a comparator for preclinical testing of new drugs. Pharmacokinetic data for CQ in animal models are limited; thus, we conducted a three-part investigation, comprising (i) pharmacodynamic studies of CQ and CQ plus dihydroartemisinin (DHA) in Plasmodium berghei-infected mice, (ii) pharmacokinetic studies of CQ in healthy and malaria-infected mice, and (iii) interspecies allometric scaling for CQ from 6 animal and 12 human studies. The single-dose pharmacodynamic study (10 to 50 mg CQ/kg of body weight) showed dose-related reduction in parasitemia (5- to >500-fold) and a nadir 2 days after the dose. Multiple-dose regimens (total dose, 50 mg/kg CQ) demonstrated a lower nadir and longer survival time than did the same single dose. The CQ-DHA combination provided an additive effect compared to each drug alone. The elimination half-life (t1/2), clearance (CL), and volume of distribution (V) of CQ were 46.6 h, 9.9 liters/h/kg, and 667 liters/kg, respectively, in healthy mice and 99.3 h, 7.9 liters/h/kg, and 1,122 liters/kg, respectively, in malaria-infected mice. The allometric equations for CQ in healthy mammals (CL = 3.86 × W0.56, V = 230 × W0.94, and t1/2 = 123 × W0.2) were similar to those for malaria-infected groups. CQ showed a delayed dose-response relationship in the murine malaria model and additive efficacy when combined with DHA. The biphasic pharmacokinetic profiles of CQ are similar across mammalian species, and scaling of specific parameters is plausible for preclinical investigations.

Chloroquine (CQ) was introduced 50 years ago as an alternative to quinine (25, 70). It became the drug of choice for both prophylaxis and treatment of malaria, but resistance has caused a decline in the contemporary clinical use of chloroquine (25, 35, 40, 70, 72). Nevertheless, CQ remains one of the most important antimalarial drugs, especially in the treatment of vivax malaria and special patient groups, such as children and pregnant women (32, 37, 48, 51, 73), not least because it is inexpensive and well tolerated and has a rapid onset of action. Recent studies have clarified the mechanism of CQ resistance and shown that clinical efficacy of CQ may return at least a decade after it has been withdrawn from use, prompting suggestions that CQ could reemerge as an important therapeutic option for malaria, most likely in combination with artemisinin compounds or chemosensitizing agents (25, 28, 36, 42, 45, 70).

Notwithstanding its clinical status, CQ has a prominent role as a comparator for in vitro and in vivo preclinical testing of new antimalarial drugs (54, 56, 68, 74). Remarkably, there is a paucity of pharmacokinetic and pharmacodynamic data for CQ in preclinical animal models, particularly in murine malaria models (4, 11, 29).

The pharmacokinetic parameters for CQ exhibit wide interindividual variation, although limitations in study design and analytical procedures have been contributing factors (18, 64, 65). Recent clinical studies have provided more robust pharmacokinetic parameters for CQ, including data in children and pregnant women (32, 37, 51). CQ apparent clearance (CL/F) and apparent volume of distribution (V/F) data are matrix dependent, due to a high blood/plasma ratio (>5:1), but elimination rate constant (k) and half-life (t1/2) of CQ are comparable from blood and plasma pharmacokinetic profiles (18, 35, 65). For example, the clearance of CQ from whole blood and plasma is approximately 0.1 to 0.25 liter/h/kg of body weight and 0.5 to 0.9 liter/h/kg, respectively, in healthy volunteers, and the t1/2 of CQ is 150 to 290 h (17–19, 32, 35, 47, 59). Approximately 30 to 50% of the dose of CQ is converted by hepatic metabolism to the active metabolite, monodesethylchloroquine (DCQ) (18, 59).

Pharmacokinetic studies of CQ in animal models are limited, but data from the more detailed investigations show biphasic elimination, long β-phase half-life, and large volume of distribution (1, 2, 50). As CQ is widely used in preclinical animal studies, we have conducted a three-component investigation, comprising (i) pharmacodynamic studies of single- and multiple-dose CQ, and a single-dose combination of dihydroartemisinin (DHA) plus CQ, in Plasmodium berghei-
infected mice; (ii) pharmacokinetic studies of CQ in control and *P. berghei*-infected mice; and (iii) an interspecies allometric analysis of pharmacokinetic parameters for CQ.

MATERIALS AND METHODS

May-Grunwald-Giemsa stain was obtained from the Department of Microbiology, Royal Perth Hospital, Australia. CQ diphosphate (C_{18}H_{14}C_{2}N_{2}O_{6}, 2H_{2}PO_{4}·H_{2}O; molecular weight, 515.9; molecular weight of anhydrous CQ = 319.9) and amoquin dihydrochloride (AQ; internal standard for high-performance liquid chromatography [HPLC] analysis) were obtained from Sigma-Aldrich Pty Ltd., Castle Hill, Australia. Monodesethylchloroquine diolactate was manufactured by Starks Associates (Buffalo, NY). Piperaquine phosphate (PO; internal standard for HPLC analysis) was obtained from Yick-Vic Chemicals and Pharmaceuticals, Kowloon, Hong Kong. Sodium pentobarbitone for injection (50 to 100 mg/kg i.p.) was obtained from Starks Associates (Buffalo, NY). Piperaquine phosphate (PQ; internal standard for HPLC analysis) was obtained from Yick-Vic Chemicals and Pharmaceuticals, Kowloon, Hong Kong.

Mice. Mice were examined by oil immersion light microscopy at short t ng), mixed with 5 ml of

Parasites. *Plasmodium berghei* ANKA parasites (Australian Army Malaria Research Institute, Enoggera, Australia) were maintained by continuous weekly blood passage in BALB/c mice. A standard inoculum of 10^7 parasitized erythrocytes per 100 μl was prepared by dilution of blood harvested from BALB/c mice (>30% parasitemia) in citrate-phosphate-dextrose solution (39) and administered by intraperitoneal (i.p.) injection to infect experimental (Swiss) mice.

Parasite enumeration in infected mice. Peripheral blood smears were prepared with blood obtained from the tail veins of infected mice. The thin films were fixed in methanol (3 min) and then stained with May-Grunwald-Giemsa stain using a Hema-Tek staining machine (Ames Co., Elkhart, IN). Blood smears were examined by oil immersion light microscopy at ×100 magnification (Leica DMLS light microscope; Leica Microsystems, Gladesville, Australia). The parasitemia was determined by counting 30 or 100 fields of view for <0.5% and <0.5% infected erythrocytes, respectively, thus ensuring a limit of detection on the order of 0.002% parasitemia. Tail vein bleeds were performed at least twice daily until the time of euthanasia (>40% parasitemia, >10% reduction in mouse body weight in less than 24 h, or termination of the experimental protocol). Mice were euthanized by sodium pentobarbitone injection (50 to 100 mg/kg). Mice were anesthetized with 50 to 100 mg/kg sodium pentobarbitone 5 to 10 min prior to blood collection. Blood was harvested from groups of mice (n = 5) by cardiac puncture at 10, 15, 20, 30, 45, 60, 75, and 90 min; 2, 2.5, 3, 4, 5, 8, 12, 18, 24, 30, 36, 48, and 5 h; and 3, 4, 5, and 7 days into 1 ml l-hemif erin tubes (Vacutainer; Becton Dickinson, Franklin Lakes, NJ) and centrifuged at 3,000 × g for 10 min, and the plasma was separated and stored at −80°C until analyzed by high-performance liquid chromatography (HPLC) for CQ and DCQ measurement (31). A peripheral blood film was prepared from each mouse prior to CQ dosing and at the time of euthanasia to confirm that the parasitemia data in the pharmacokinetic study mice were consistent with the pharmacodynamic study (data not shown).

The pharmacokinetic properties for CQ and DCQ were also determined in a multidose study of 125 uninfected male Swiss mice (30.8 ± 3.1 g) and 125 malaria-infected mice (29.2 ± 3.1 g) inoculated with 10^7 *P. berghei* parasites and given CQ 64 h later, at which time the mean parasitemia was 3.2% ± 1.3%. CQ was administered i.p. at the dose of 1,500 μg (approximately 50 mg/kg CQ). Mice were anesthetized with 50 to 100 mg/kg sodium pentobarbitone 5 to 10 min prior to blood collection. Blood was harvested from groups of mice (n = 5) by cardiac puncture at 4, 8, 12, and 24 h after the first dose; 24 h after the second, third, and fourth doses; and then 1, 2, 4, 6, 8, 12, and 18 h after the fifth dose and at 5, 5.25, 5.5, 6, 7, 8, 10, 15, 21, and 30 days after commencement of the dosage regimen. The blood was processed for CQ and DCQ measurement by HPLC analysis for peripheral blood films as described above. In addition, a peripheral blood film was prepared each day of mice in the last two cohorts (21 and 30 days; n = 10) to assess the pharmacodynamic response to the five-dose 50-mg/kg/dose regimen.

HPLC analysis. Stock solutions of CQ and DCQ (1-μl/gitter base) were prepared separately, and two internal standards (AQ and PO) were used, to counter any interference in the analysis. A 5-point linear calibration curve was prepared, using blank human plasma, and quality control samples (5 μg/litter and 20 μg/litter) were included for each analytical batch. CQ and DCQ extraction from plasma was based on our established method (31). Briefly, plasma standards and samples (500 μl) were spiked with internal standard (PO, 200 ng, and AQ, 200 ng), mixed with 5 ml of r-butyrimethyl ether and 200 μl of 5 M NaOH, and then manually shaken for 10 min. All tubes were centrifuged (1,500 × g) for 10 min, and 4.5 ml of the organic phase was then transferred into clean tubes and back-extracted into 0.1 ml of 0.1 M HCl by shaking for 5 min. This procedure was repeated once and centrifugation for 10 min in 1,500 × g. The organic layer was aspirated to waste. The HCl layer was transferred to a clean glass tube and centrifuged (1,500 × g) for 20 min, after which 60-μl aliquots were injected onto the HPLC column.

Separation was performed on a Gemini C_{18}-phenyl 110A (150- by 4.6-mm, 5-μm) HPLC column connected to a Gemini C_{18}-phenyl (4- by 3-mm) guard column (Phenomenex, Lane Cove, Australia) at 30°C. The mobile phase comprised 0.05 M KH_{2}PO_{4}, (pH 2.5) and 13% (vol/vol) acetonitrile, with a flow rate of 1 ml/min, and analytes were detected by UV absorbance at 343 nm. The approximate retention times for PO, CQ, and AQ were 2.5, 4.2, 5.2, and 6.8 min, respectively.

The intraday relative standard deviations (RSDs) for CQ were 7.8, 4.2, and 3.6% at 5 μg/litter, 500 μg/litter, and 3,000 μg/litter, respectively (n = 5), while interday RSDs were 8.3, 5.8, and 5.2% at 5 μg/litter, 500 μg/litter, and 3,000 μg/litter, respectively (n = 5). The intraday RSDs for DCQ were 6.9, 4.3, and 3.4% at 5 μg/litter, 100 μg/litter, and 1,000 μg/litter, respectively (n = 5), while interday RSDs were 7.9, 6.3, and 5.4% at 5 μg/litter, 100 μg/litter, and 1,000 μg/litter, respectively (n = 5). The limits of quantification and detection were 1.2 μg/litter and 0.6 μg/litter for CQ and 1 μg/litter and 0.5 μg/litter for DCQ, respectively.

Allometric scaling. A detailed literature search for pharmacokinetic studies of CQ in mammals was performed. Where necessary, estimates of the parameters of interest (r, s, and clearance) were determined using model-independent pharmacokinetic calculations. Regression analysis of the log-transformed data was used to determine the coefficient (r) and exponent (s) for the simple allometric equation Y = a × W^r, where Y is the pharmacokinetic parameter and W is body weight (20, 41, 60). Interspecies scaling of half-life included all available data from malaria-infected and control subjects. However, due to the high blood/
plasma ratio of CQ (18, 65), scaling of clearance and volume of distribution comprised only the plasma data.

Statistical and pharmacokinetic analyses. Data analysis and representation were performed with SigmaPlot version 11 (Systat Software Inc., San Jose, CA). Data are means ± standard deviations (SDs) unless otherwise indicated. The Student t test or one-way analysis of variance (ANOVA) was used for comparison of groups as appropriate, with a significance level of P < 0.05.

For pharmacokinetic modeling, measured plasma concentrations were normalized to a dose of 50 mg/kg CQ, according to the weight of each mouse at the time of dosing. Consistent with the principles of destructive testing (5, 75), the mean normalized plasma concentration for each group of mice was used to estimate pharmacokinetic parameters. Pharmacokinetic analysis was performed using Kinetica version 5.0 (Thermo Fisher Scientific, Inc., Waltham, MA). Noncompartmental analysis of the plasma concentration-time data was used to estimate area under the curve (AUC$_{0-\infty}$; log-linear trapezoidal method), C_{max} (maximum plasma concentration), t_{max} (time of maximum plasma concentration), $t_{1/2}$, CL/F, and V/F of CQ, and the AUC$_{\text{max}}$, $t_{1/2}$ of DCQ, for the single-dose data. The metabolic ratio of DCQ to CQ in control and malaria-infected mice was calculated from the observed biphasic elimination of CQ ($t_{1/2,2}$, and $t_{1/2,3}$; weighting = 1/22). A two-compartment model (weighting = 1/22) with first-order absorption was fitted to the DCQ plasma concentration-time data to estimate the formation rate constant (DCQ from CQ; k_p).

RESULTS

Pharmacodynamic study. Administration of a single dose of CQ resulted in a decline in parasitemia at all doses tested (Fig. 1). At 10, 20, 30, and 50 mg/kg CQ, the parasitemia fell to a nadir of 1%, 0.04%, 0.008%, and 0.004%, respectively, approximately 2 days after the dose. The parasitemia then increased until the experimental endpoints were reached, with median (range) survival times of 6 (5 to 8), 4 (3 to 5), 6 (5 to 11), and 8 (6 to 11) days for the 10, 20, 30, and 50 mg/kg CQ dose groups, respectively.

Mice receiving the 3-dose regimen (20, 20, and 10 mg/kg CQ, 12 h apart) showed a significant decrease in parasitemia, falling below the limit of detection approximately 3 days after the initial dose and remaining undetected for at least 12 h (Fig. 2). Parasite nadir was estimated by extrapolation to occur 74 h after the initial dose of CQ, at a parasitemia of 0.0005%, and the median (range) survival time was 7 (6 to 10) days. The five-dose 10-mg/kg/dose series also showed a sustained decrease in parasitemia, falling below the limit of detection approximately 66 h after the first dose and remaining undetectable for more than 2 days (Fig. 2). The median survival time in this group was 9 (7 to 16) days.

Single-dose DHA (30 mg/kg) and CQ (30 mg/kg) and the DHA-CQ combination showed a prompt decrease in parasitemia to parasite nadirs at 25 h (0.8%), 49 h (0.16%), and 49 h (0.08%), respectively (Fig. 3). The nadir parasitemia for DHA-CQ was significantly lower than that for DHA alone ($P = 0.004$; t test) and suggested an additive effect.

In mice that received five 50-mg/kg doses of CQ (from the pharmacokinetic study), a prompt decline in mean parasitemia was observed, falling below the limit of detection after the third dose (Fig. 4). Parasites remained undetectable for a further 7 days, and recrudescence was observed 10 days after the initial dose. From 14 to 21 days, the mean parasitemia remained relatively stable (0.37 to 0.59%) and then steadily decreased until becoming undetectable 24 days after the initial CQ dose.

Pharmacokinetic study. The plasma CQ and DCQ concentration-time profiles following a single dose and multiple doses of CQ are shown in Fig. 5 and 6. The C_{max}, t_{max}, elimination $t_{1/2}$, CL/F, and V/F of CQ were 1,708 μg/liter, 20 min, 46.6 h, 9.9 liters/h/kg, and 667 liters/kg, respectively, in healthy mice and 1,436 μg/liter, 10 min, 99.3 h, 7.9 liters/h/kg, and 1,122 liters/kg in malaria-infected mice (50-mg single-dose data; noncompartmental analysis). The C_{max} and t_{max} of DCQ were 614 μg/liter, 4 h, and 32.6 h, respectively, in healthy mice.
and 345 µg/liter, 2.5 h, and 74.4 h in malaria-infected mice. The metabolic ratio of DCQ to CQ was 1.08 and 0.62 for healthy and malaria-infected mice, respectively.

Based on the two-compartment model, $t_{1/2}$ of CQ were 3.3 and 53 h, respectively, in healthy mice and 4.7 and 163 h in malaria-infected mice (Fig. 5). CQ and DCQ data were incomplete (analytes not detected) after 7 days in the multiple-dose study; hence, detailed pharmacokinetic data were not obtained from the two-compartment model. However, combining control and malaria-infected data from the single- and multiple-dose studies, the mean rate of formation of DCQ from CQ (k_F) was 0.63 ± 0.55 h$^{-1}$ and the formation half-life ($t_{1/2,\text{Formation}}$) was 1.7 ± 1.0 h.

Allometric scaling. Data for allometric scaling were obtained from 6 animal studies (mice, rats, rabbits, monkeys, and dogs) and 12 human studies (Tables 1 and 2). The allometric plots for CQ plasma clearance in controls and malaria-infected mammals are shown in Fig. 7, and the allometric equations were $CL = 3.86 \times W^{0.56}$ ($r^2 = 0.96$) and $CL = 2.16 \times W^{0.65}$ ($r^2 = 0.99$), respectively. The allometric equations for CQ half-life were $t_{1/2} = 123 \times W^{0.2}$ ($r^2 = 0.58$) and $t_{1/2} = 134 \times W^{0.11}$ ($r^2 = 0.61$) for controls and malaria-infected groups, respectively. The allometric equations for CQ volume of distribution were $V = 230 \times W^{0.94}$ ($r^2 = 0.92$) and $V = 245 \times W^{0.68}$ ($r^2 = 0.9$) for controls and malaria-infected groups, respectively.

Using allometric scaling principles and the equation for CQ plasma clearance in malaria infection ($CL = 2.16 \times W^{0.65}$), a dose of 35 to 40 mg/kg CQ base would be required in children weighing 10 to 20 kg in order to achieve the same plasma concentrations as the adult dose of 25 mg/kg CQ base (73). By comparison, a simple weight-based equation ($dose_{\text{child}} [\text{mg}] = dose_{\text{adult}} [\text{mg}] \times [\text{weight}_{\text{child}}/\text{weight}_{\text{adult}}]^{0.75}$ [30]) would estimate a similar dose range of 30 to 35 mg/kg for children of 10 to 20 kg in body weight.
The single-dose study (Fig. 1) showed a delay of 6 to 12 h before the decline in parasite density and a nadir parasitemia approximately 2 days (i.e., two erythrocytic cycles in *P. berghei*) after CQ administration. It is therefore likely that the period of maximum efficacy for CQ in this model is on the order of 24 to 36 h posttreatment. By comparison, DHA produces a prompt decline and parasite nadir 24 h after single doses, and the maximum antimalarial effect appears to occur about 12 h post-treatment (23). These observations suggest that characterizing the pharmacodynamic profile of new chemical entities and comparator antimalarial drugs has the scope to improve the study design and interpretation of data in antimalarial drug development research. Although it may not be feasible to compare novel antimalarial compounds to similar drugs (54, 68, 74), comparisons would be assisted by using a range of comparator drugs (53) with established pharmacodynamic profiles.

Direct extrapolation of dosage strategies from animal studies to clinical trials is problematic; however, our multiple-dose data demonstrate that investigations of treatment options can be informative (Fig. 2). The same total dose (50 mg/kg) was shown to be significantly more effective when given as five 10-mg/kg doses over two erythrocytic cycles, compared to a one-cycle (24-h) or single-dose strategy. For each regimen, the nadir parasitemia occurred approximately 2 days after the final dose of CQ, thus providing evidence of a delayed dose-response relationship.

The multiple-dose pharmacodynamic study also produced an interesting finding that would be relevant to investigations of the immune system and malaria infection (Fig. 4). Consistent with our previous reports of piperaquine in the murine malaria model (43, 44), high-dose CQ led to a curative response. This outcome occurred at very low plasma concentrations several weeks after dosing (the value was unable to be extrapolated from the present study but was likely <1 μg/liter) (Fig. 6). Therefore, we can conclude that resolution of the recrudescent parasitemia was a combination of drug efficacy (to reduce the initial parasite bioburden) and immunological mechanisms. Further investigations of this finding were beyond the scope of the present study.

This multiple-dose, murine malaria treatment model could be applied to investigations that complement recent clinical studies of high-dose antimalarial drugs (6, 67). For example, a total dose of 50 mg/kg CQ as a 5-dose regimen over 3 days was given to children for treatment of falciparum malaria (67). This dose is twice the WHO recommendation (for adults and children) of 25 mg/kg CQ as a 3-dose regimen over 3 days (73). Although it was not specifically tested in the present study, we have shown that the murine model could be used for pharmacodynamic comparisons of standard and high-dose regimens, including variable dose intervals. However, as noted previously, the murine studies provide a conceptual understanding and direct extrapolation to human malaria may require prudent consideration (23, 43).

Extending our study to evaluate the combination of CQ and an artemisinin drug (DHA) provided a valuable comparison to previous studies. *In vitro* and *in vivo* efficacy studies have shown paradoxical findings for a range of quinoline and artemisinin combinations (12, 13, 15, 21, 26). CQ is reported to be antagonistic and additive in combination with artemisinins *in vitro* (12, 21, 26) and additive in the Peters 4-day suppressive test in mice (13). Results from our murine treatment model suggest a weak additive effect of CQ and DHA *in vivo* (Fig. 3). There are few clinical studies of CQ in combination with artemisinin drugs (48), but reports of CQ-artesunate treatment in West Africa and Vietnam suggest that beneficial outcomes can be achieved (24, 33, 49, 63).

By comparison, we have recently shown an additive effect when DHA and piperaquine were administered concurrently...
in the murine malaria treatment model (43), a finding that is consistent with the clinical efficacy of this combination (7, 46, 58) but contrasts with in vitro data suggesting mild antagonism (15). As suggested by these reports, the selection of antimalarial partner drugs is complex, requiring consideration of the

![FIG. 7. Allometric plot for CQ plasma clearance (CL/F) in healthy species (log scale on both axes).](image)

TABLE 1. Chloroquine pharmacokinetic data from healthy mammalian species with malaria infection

<table>
<thead>
<tr>
<th>Matrix and species</th>
<th>n</th>
<th>Wt (kg)</th>
<th>Half-life (h)</th>
<th>CL<sub>a</sub> (liters/h/kg)</th>
<th>V<sub>a</sub> (liters/kg)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mice</td>
<td>0.03</td>
<td>46.6</td>
<td>9.9</td>
<td>667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rats<sup>b</sup></td>
<td>0.25</td>
<td>10.8</td>
<td>10.4</td>
<td>163</td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>Rabbits<sup>c</sup></td>
<td>5</td>
<td>12.5</td>
<td>26.7</td>
<td>226</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Monkeys<sup>c</sup></td>
<td>6</td>
<td>4.5</td>
<td>18.8</td>
<td>63</td>
<td></td>
<td>57</td>
</tr>
<tr>
<td>Human, adults</td>
<td>11</td>
<td>75</td>
<td>282</td>
<td>204</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>Human, adults</td>
<td>5</td>
<td>72</td>
<td>1,392</td>
<td>710</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>Human, adults</td>
<td>7</td>
<td>58</td>
<td>217</td>
<td>181</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Human, adults</td>
<td>6</td>
<td>54</td>
<td>250</td>
<td>261</td>
<td></td>
<td>69</td>
</tr>
<tr>
<td>Human, adults</td>
<td>8</td>
<td>58</td>
<td>192</td>
<td>154</td>
<td></td>
<td>69</td>
</tr>
<tr>
<td>Human, adults</td>
<td>10</td>
<td>54</td>
<td>268</td>
<td>132</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>Human, adults</td>
<td>5</td>
<td>64</td>
<td>386</td>
<td>250</td>
<td></td>
<td>71</td>
</tr>
<tr>
<td>Human, adults</td>
<td>4</td>
<td>76</td>
<td>374</td>
<td>302</td>
<td></td>
<td>71</td>
</tr>
<tr>
<td>Human, adults</td>
<td>5</td>
<td>73</td>
<td>479</td>
<td>283</td>
<td></td>
<td>71</td>
</tr>
<tr>
<td>Human, adults</td>
<td>6</td>
<td>45</td>
<td>67</td>
<td>82.6</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Human, adults</td>
<td>5</td>
<td>58</td>
<td>70.5</td>
<td>63.5</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Human, adults</td>
<td>30</td>
<td>52</td>
<td>291</td>
<td>129.5</td>
<td></td>
<td>32</td>
</tr>
</tbody>
</table>

Whole blood						
Mice^e	0.025					11
Rabbits	8	2.0	223	0.31		86
Dogs, beagle	7	11.8	302	0.13		53
Human, adults	6	45	1,248	0.091		81
Human, adults	5	59	150	0.21		45.3
Human, adults	7	66.5	162	0.25		57.8

Total no. of human adults^d 102

Mean ± SEM

Plasma						
Mice	0.03	99.3	7.9	1,122		
Rats^b	0.25	10.8	10.4	163		55
Monkeys^c	6	4.5	30.6	1.02	44	57
Human, adults	11	53	302	0.61	136	19
Human, adults	6	46	116	0.595	99.7	17
Human, adults	5	56	76	0.53	58.2	17

TABLE 2. Chloroquine pharmacokinetic data from mammalian species with malaria infection

<table>
<thead>
<tr>
<th>Matrix and species</th>
<th>n</th>
<th>Wt (kg)</th>
<th>CL<sub>a</sub> (liters/h/kg)</th>
<th>V<sub>a</sub> (liters/kg)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mice</td>
<td>0.03</td>
<td>99.3</td>
<td>7.9</td>
<td>1,122</td>
<td></td>
</tr>
<tr>
<td>Rats<sup>b</sup></td>
<td>0.25</td>
<td>10.8</td>
<td>10.4</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>Monkeys<sup>c</sup></td>
<td>6</td>
<td>4.5</td>
<td>30.6</td>
<td>1.02</td>
<td>44</td>
</tr>
<tr>
<td>Human, adults</td>
<td>11</td>
<td>53</td>
<td>302</td>
<td>0.61</td>
<td>136</td>
</tr>
<tr>
<td>Human, adults</td>
<td>6</td>
<td>46</td>
<td>116</td>
<td>0.595</td>
<td>99.7</td>
</tr>
<tr>
<td>Human, adults</td>
<td>5</td>
<td>56</td>
<td>76</td>
<td>0.53</td>
<td>58.2</td>
</tr>
</tbody>
</table>

Whole blood					
Mice^e	0.025				11
Human, adults	9	21	0.15	112	52
Human, children	83	12	0.24	262	51
Human, adults	7	54	201	0.099	28.6
Human, adults	15	46	209	0.189	57.3

^a CL is apparent clearance (CL/F), and V is apparent volume of distribution (V/F).

^b Pharmacokinetic parameters determined from concentration-time profile of 48 h after dose.

^c Pharmacokinetic parameters determined from concentration-time profile of 24 h after dose.

^d Pharmacokinetic data from 12 human studies comprising 102 volunteers.

^e Pharmacokinetic parameters determined from concentration-time profile of 4 h after dose.

^f —, present study.
pharmacology, pharmacokinetics, and pharmaceutical properties of each drug, alone and in combination. Our studies indicate that this murine model can be a valuable preclinical tool in antimalarial drug discovery and therapeutic refinement (8, 43).

An essential component of in vivo antimalarial efficacy tests is determining the pharmacokinetic properties of the drug(s). However, pharmacokinetic data for CQ in mice were notably deficient. The only specific murine study of CQ pharmacokinetics was an investigation in healthy and malaria-infected (Plasmodium chabaudi) mice (11). Whole-blood CQ concentration was measured for the pharmacokinetic determinations, but the sampling period was only 4 h postdose, therefore limiting the findings to the distribution phase of the pharmacokinetic profile. Nevertheless, Cambie et al. (11) found that malaria infection (particularly high parasitemia of >20% in mice) increased the half-life and \(V/F \), which suggests a decreased \(CL/F \) (Tables 1 and 2). One other investigation of CQ pharmacokinetics in healthy mice has been reported, in the context of grapefruit juice interaction (4). However, the data were incomplete and implausible and could not be compared to the present study.

Reports of CQ pharmacokinetics in other nonhuman species also are limited (Tables 1 and 2), but there is general consistency in the findings of a long half-life, large \(V/F \), and low \(CL/F \) for CQ. There is a paucity of animal data in malaria infection, but the available human studies suggest modest changes in pharmacokinetic properties of CQ (Tables 1 and 2).

Against this background, our study was designed to provide detailed pharmacokinetic profiles for CQ and the active metabolite, monodesethylchloroquine (DCQ), following single and multiple doses in healthy and malaria-infected (P. berghei) mice. The pharmacokinetic data were consistent with expectations (Fig. 5 and 6), despite incomplete results from the multiple-dose study. As evident in Table 1, the longer \(t_{1/2} \), and lower \(CL \) of CQ in malaria infection, compared to healthy controls, were in accordance with other controlled studies (17, 19, 47, 57). The estimated \(t_{1/2} \) of DCQ in malaria-infected and control mice was shorter than the \(t_{1/2} \) of CQ, suggesting that elimination of DCQ is formation rate dependent (61). Further data to support this conclusion were the metabolic ratios (DCQ to CQ) in malaria-infected (0.6) and control (1.08) mice, both of which were comparable to those of malaria-infected patients (47) and healthy volunteers (ratio, 0.78 to 0.87), respectively (22, 32, 59).

Comparison of the pharmacokinetic data from our study was best represented by allometric scaling, although limitations included the paucity of nonhuman data and the matrix used in the studies. The majority of CQ pharmacokinetic studies have used plasma, and all of the applicable human data were represented separately, as this did not alter the allometric equations (Fig. 7). The allometric scaling indicated that the differences in pharmacokinetic parameters between healthy controls and malaria infection were modest (based on confidence intervals [data not shown]), but the power of these comparisons was limited by the small number of species available for the scaling. Although interspecies scaling is well established in antimicrobial chemotherapy (16, 38, 41, 60), there are few reports of scaling for antimalarial drugs (10, 14). Interspecies comparison of halofantrine using data from uninfected rats and dogs, and malaria-infected humans, suggested a predictive relationship for \(CL \) and \(V \) (10). Allometric scaling has also been applied to predict human clearance of a novel 4-aminoquinoline from pharmacokinetic data in uninfected mice, rats, dogs, and monkeys (14). Therefore, our analysis of CQ suggests that interspecies scaling data could be applied to phase I studies of new antimalarial drugs, particularly for estimating the dose in first-in-human studies.

Despite the potential value of allometric scaling, clinical limitations of this technique have been identified and cautious interpolation of mammalian data to predict pediatric dosing is warranted (20, 30). Nevertheless, weight-based doses for numerous drugs are higher in children than in adults (30) and recent reports indicate that pediatric doses of antimalarials should be reevaluated (6, 66, 67). In relation to the reports of double-dose CQ (50 mg/kg over 3 days [66, 67]), application of a simple weight-based pediatric equation (30) or our allometric equation to the standard WHO adult dose of 25 mg/kg (73) demonstrates that 35 mg/kg and 40 mg/kg, respectively, would be appropriate. Hence, it could be concluded that 50 mg/kg CQ is only 25 to 40% higher than the scaled equivalent dose.

Our study contributes to the pharmacokinetic and pharmacodynamic knowledge of CQ, but limitations associated with animal studies necessitate prudent conclusions. We have evaluated only a small range of dosage strategies, and the pharmacodynamic outcomes were dose dependent, although some generalizations are credible. Our pharmacokinetic results were limited by the incomplete data in the multiple-dose study, and we did not investigate the possibility of dose-dependent pharmacokinetics for CQ. Further pharmacokinetic studies of CQ could include a detailed evaluation of blood/plasma ratio, as well as the effect of severity of malaria infection on CQ pharmacokinetic properties.

We conclude that the biphasic pharmacokinetic profiles of CQ are similar across mammalian species and that scaling of specific parameters is plausible. CQ was shown to have a delayed dose-response relationship and to have additive efficacy when combined with DHA. In addition to demonstrating the scope of preclinical data that can be generated using a murine malaria treatment model, our study provides pharmacokinetic and pharmacodynamic information for investigators who use CQ as a comparator in drug discovery research programs.

ACKNOWLEDGMENTS

This work was supported by an NHMRC New Investigator Grant (141103) and an NHMRC Biomedical (Dora Lush) Postgraduate Research Scholarship (323251) from the National Health and Medical Research Council of Australia.

REFERENCES

33. Kofoed, P. E., et al. 2003. No benefits from combining chloroquine with artesunate for three days for treatment of Plasmodium falciparum in Guin-
35. Krishna, S., and N. J. White. 1996. Pharmacokinetics of quinine, chloro-
36. Lauffer, M. K., et al. 2006. Return of chloroquine antimalarial efficacy in
37. Lee, S., et al. 2008. Chloroquine pharmacokinetics in pregnant and non-
38. Lees, P., and A. F. Shojaee. 2002. Rational dosing of antimicrobial drugs:
Livingstone, Philadelphia, PA.
40. Lim, P., et al. 2010. Decreased in vitro susceptibility of Plasmodium falci-
parum isolates to artesunate, mefloquine, chloroquine, and quinine in Cam-

References

leufenalantra for treating uncomplicated malaria in African children: a ran-
namics of doxycycline in a murine malaria model. Antimicrob. Agents Che-
mother. 51:4477–4479.
9. Beausoleil-Gatty, P., L. Témey-Caillard, F. Gonnet-Gonzalez, L. Ramiara-
amana, A. G. Chabaud, and I. Landau. 1994. The chemosensitivity of the
rodent malarial—relationships with the biology of merozoites. Int. J. Para-
The pharmacokinetics of chloroquine in healthy and Plasmodium chabaudi-
combined with standard antimalarials against chloroquine-sensitive and chloro-
90:203–206.
effect of combinations of qinghaosu (artesiminin) with standard antimalarial
pharmacokinetic evaluation of novel 4-aminooquinoline anti-malarials.
droartemisinin, and other conventional and novel antimalarial drugs. Anti-
16. Dinev, T. G. 2008. Comparison of the pharmacokinetics of five aminoglyco-
sidided and amino side chain antibiotics using allometric analysis in mammal
and non-tribal healthy volunteers and patients with Plasmodium falciparum ma-
18. Ducharme, J., and R. Farinotti. 1996. Clinical pharmacokinetics and metab-
31:257–274.
and red-cell concentrations following an intravenous infusion to healthy
41:391–407.
52:154–158.
cated malaria in children in Sao Tome and Principe: a double-blind, ran-
24. Gupta, S., M. M. Thapar, S. T. Mariga, W. H. Wernsdorfer, and A. Bjork-
96:429–432.
1984. The single dose kinetics of chloroquine and its major metabolite desethyl-
2007. Development of a pharmacodynamic model of murine malaria and antima-
oroquine efficacy in Plasmodium berghei NK65-infected ICR mice, with ref-
cence to the initial parasite load and starting day of drug administration on the
Arch. Dis. Child. 93:207–211.
quine and chloroquine in Maelanese children with uncomplicated malaria.
monodesethylcholoroquine in pregnancy. Antimicrob. Agents Chemother. 54:
1186–1192.