

The homeodomain is one of the most important eukaryotic DNA-binding motifs and has been identified in over one thousand proteins. Homeodomain proteins play critical roles in diverse biological processes, including cell differentiation and cell pattern formation. The human Pitx2 homeodomain binds several different DNA sequences and is a pivotal component of both the TGF-β and Wnt/β-catenin signaling pathways. As the recognition of specific DNA sequences represents an essential biochemical function of all DNA-binding proteins, we have chosen the Pitx2 homeodomain model to investigate the mechanisms that convey biological specificity in these protein-DNA interactions. Here, we report complete chemical shift assignments of the human Pitx2 homeodomain and the R24H mutation that induces ring dermoid of the cornea syndrome.

Abstract

The homeodomain is one of the most important eukaryotic DNA-binding motifs and has been identified in over one thousand proteins. Homeodomain proteins play critical roles in diverse biological processes, including cell differentiation and cell pattern formation. The human Pitx2 homeodomain binds several different DNA sequences and is a pivotal component of both the TGF-β and Wnt/β-catenin signaling pathways. As the recognition of specific DNA sequences represents an essential biochemical function of all DNA-binding proteins, we have chosen the Pitx2 homeodomain model to investigate the mechanisms that convey biological specificity in these protein-DNA interactions. Here, we report complete chemical shift assignments of the human Pitx2 homeodomain and the R24H mutation that induces ring dermoid of the cornea syndrome.

Keywords

Pitx2; Homeodomain; Axenfeld-Rieger; DNA-binding; NMR

Biological context

The homeodomain is an evolutionarily conserved protein fold commonly found in transcription factors. Its 60 amino acid helix-turn-helix motif allows for DNA and RNA binding in both prokaryotic and eukaryotic organisms (Banerjee-Basu et al. 2003). Despite the diverse biological functions attributed to homeodomain-containing proteins, the function of the homeodomain alone is generally similar across the family. Homeodomains bind to short DNA fragments consisting of six base-pairs with the predominant consensus sequence TAATXY (where X and Y can be A, G, C or T). The Pitx2 homeodomain recognizes TAATCC as its consensus DNA sequence and is classified as a Bicoid-type, or K-50 class, homeodomain—defined as those homeodomains with a lysine in position 50.

The homeodomain-containing transcription factor Pitx2 is present in many developing embryonic tissues, including the heart (Su et al. 2004). Several human diseases, such as Rieger syndrome, iris hypoplasia and iridogoniodygenesis are linked to mutations in the Pitx2 gene (Saadi et al. 2001; Semina et al. 1996). These autosomal dominant diseases present themselves with anterior segment abnormalities including the eye, as well as the
teeth. In addition, Pitx2 also plays a critical role in left-right asymmetry and heart development. Pitx2 /−− null mice exhibit many heart defects including malpositioning of the heart, lack of atrial septation, hypoplasia of the ventricles and atrioventricular valve deformation (Kitamura et al. 1999). The severity of disease associated with Pitx2 mutations is consistent with its role as a pivotal component of both the TGF-β and Wnt/β-catenin signaling pathways, which control the activity of many transcription factors and cell cycle regulators. Not surprisingly, the homeodomain of Pitx2 has been identified as a hotspot for mutations. The majority of these homeodomain mutations fall into three broad categories (1) those that modify DNA-binding ability (2) those that enhance or diminish transactivation capability and (3) those that impact protein stability. One such mutation that modifies DNA binding involves an amino acid substitution of arginine 24 to histidine (R24H) and causes the autosomal dominantly inherited ring dermoid of the cornea syndrome (MIM180550) (Xia et al. 2004). Unlike many other Pitx2 homeodomain mutations the only clinical manifestations in R24H affected patients are observed in the eyes (Xia et al. 2004) suggesting that from a clinical perspective this may be considered a mild mutation. To better understand the molecular mechanisms of sequence specific DNA binding, we report the NMR assignments of the Pitx2 homeodomain in its wildtype (wt) and R24H mutant isoforms. This is an important first step toward elucidating the basis of sequence specific DNA binding and will aid in our understanding in the evolution of ring dermoid of the cornea syndrome via the Pitx2 R24H mutation.

Methods and experiments

Protein expression and purification

Proteins were expressed from a pet28 expression vector as a His6-TEV-GS-Pitx2homeodomain-EFIVTD fusion protein in Escherichia coli BL21DE3star cells (Invitrogen). Expression conditions were as described previously (Chaney et al. 2005). Cells were harvested by centrifugation at 2,500g for 15 min. Harvested cells were resuspended in 137 mM NaCl, 2.7 mM KCl, 10 mM sodium phosphate dibasic, 2 mM potassium phosphate monobasic at pH 7.4 (PBS) + 10 mM imidazole. Resuspended cells were lysed via sonication. The lysate was cleared by centrifugation at 25,000g for 30 min, at 4°C. Cleared lysate was applied to a pre-equilibrated 5 ml HisTrap HP column (GE Healthcare). The column was washed with 10 column volumes (c.v.) of PBS + 10 mM imidazole. Next, an additional wash step of 10 c.v. with PBS + 100 mM imidazole was performed. Target fusion protein was eluted with 10 c.v. of PBS + 500 mM imidazole. Protein concentrations were estimated via A278 (ε278 = 18,350 cm−1 M−1 and the eluate was adjusted to contain 10% (v/v) glycerol, 5 mM β-mercaptoethanol and 5 mM EDTA. In-house produced TEV protease was added for fusion tag removal at a 1:25 ratio and cleavage was performed at 4°C over 4 h. Cleaved protein was then loaded on a 1 ml HiTrap SP FF (GE Healthcare) cation exchange column, washed with washing buffer (10 mM NaH2PO4, 400 mM NaCl, pH 7.0), and eluted with buffer containing a higher salt concentration (10 mM NaH2PO4, 1 M NaCl, pH 7.0). Purity was determined to be >98% by SDS-PAGE. The eluted homeodomain was dialyzed overnight at 4°C into 10 mM NaH2PO4, 150 mM Na2SO4, 1 mM EDTA, pH 7.0 for NMR studies. Proteins were then concentrated utilizing Amicon Ultra15 spin filters (Millipore) with a 3 kDa molecular cut-off.

Nuclear magnetic resonance spectroscopy

Final sample concentrations were approximately 1–1.5 mM, in 90% H2O/10% D2O solution containing 10 mM NaH2PO4, 150 mM Na2SO4 and 1 mM EDTA, at pH 7.0. All NMR experiments were carried out on Varian Inova 500, 600 and 800 MHz spectrometers. The sample temperature was set to 295 K. The 1H chemical shifts were referenced to internal DSS and the 13C and 15N shifts were referenced indirectly (Wishart et al. 1995). Assignment
of backbone and side-chain resonances were obtained utilizing the following experiments: HNCACB, HNCA, CBCA(CO)NH, HNCO, HBHA(CO)NH, (H)CC(CO)NH–TOCSY, H(CC)(CO)NH–TOCSY, HCC–TOCSY. A pH titration of the histidine side chains was performed using a long-range 1H-15N HSQC experiment. Raw data was processed utilizing NMRPipe (Delaglio et al. 1995) and spectra were analyzed via NMR-ViewJ (Johnson 2004).

Assignment and data deposition

The 1H-15N HSQC spectra for the human wt and R24H Pitx2 homeodomain are shown in Fig. 1. The native homeodomain sequence corresponds to resonances 1–60. Complete backbone assignments were obtained for residues 2–66, and near complete assignments (96%) were obtained for side-chain nuclei. The majority of residues exhibited strong, well-dispersed backbone amide resonances, indicative of a protein with a defined three-dimensional structure. For the mutant protein, most residues exhibit only small chemical shift changes suggesting that this mutation does not impact the core fold. Distinct differences in chemical shifts are observed around the point of mutation as indicated in Fig. 1. Mapping the backbone amide chemical shift changes onto the projected secondary structure profile suggests local changes in the region towards the end of helix 1 and between helices 1 and 2 (Fig. 2). Additional changes towards the end of helix 3 cannot directly be explained through physical proximity. The pK$_a$ of H24 was determined to be 6.76 ± 0.08, suggesting that the effects of the R24H mutant may be of electrostatic nature. The pK$_a$ of H7 was 6.57 ± 0.04.

The 1H, 13C and 15N chemical shifts have been deposited in the BioMagResBank (http://www.bmrb.wisc.edu/) under accession number 17147 (wt) and 17145 (R24H).

Acknowledgments

We thank Jun Ma for providing the original Pitx2 homeodomain plasmid and Al Combs for subsequent construct optimization. Funding for this project was provided through NIH grants GM063855 to M. R., RR19077 and RR027755 to the UC College of Medicine NMR facility, ES007250 and AI055406 to D.K., HL007382 to J.B.T. and an American Heart Association Fellowship to T.D.

References

Biomol NMR Assign. Author manuscript; available in PMC 2012 April 1.

Fig. 1. Overlaid 2D 1H-15N HSQC spectra of uniformly 15N-labeled Pitx2 homeodomain wildtype (red) and R24H mutant (black) in 10 mM NaH$_2$PO$_4$, 150 mM Na$_2$SO$_4$, pH 7.0. The spectra were recorded at 600 MHz 1H frequency at a temperature of 295 K. Backbone resonance assignments are indicated in one-letter amino acid code for the wt protein. Straight lines indicate resonances that have shifted significantly in the mutant isoform. Locations of peaks not visible at the contour level chosen are indicated with a box.
Fig. 2.
Weighted chemical shift changes of the Pitx2 homeodomain R24H mutant. Backbone 1H$_N$ and 15N chemical shift changes $\Delta_{av} = \left(\frac{(\Delta\delta_{HN}^2 + \Delta\delta_{NN}^2)}{25} / 2 \right)^{1/2}$ relative to the backbone chemical shifts of the free wildtype protein.