Stable Polymyxin B Susceptibility to Pseudomonas aeruginosa and Acinetobacter spp. despite Persistent Recovery of These Organisms from Respiratory Secretions of Patients with Ventilator-Associated Pneumonia Treated with This Drug

In a recent article, Lee et al. (4) reported the occurrence of an increase in MICs for polymyxin B during therapy in 3 of 16 patients treated with this drug for carbapenem-resistant Klebsiella pneumoniae infections. This report is very important, since polymyxins, polymyxin B and colistin, are last-resort drugs for the treatment of multidrug-resistant gram-negative bacteria (7, 9) and rapid development of resistance occurring during exposure to polymyxins in in vitro infection models with simulated clinical dosage regimens have been reported (2, 6), including resistance to K. pneumoniae (5), but no in vivo demonstration of this phenomenon has been reported so far. The report of Lee et al. is of great concern, although no data about polymyxin B dosages were presented and, as acknowledged by the authors, it was not possible to definitively characterize whether there was the emergence of resistance in the same strain or patients were further infected by distinct strains resistant to polymyxin B during therapy.

In contrast to in vitro findings and to what the observations of Lee et al. might suggest, a preliminary prospective study aiming to assess microbiological outcomes in patients with Pseudomonas aeruginosa and Acinetobacter species ventilator-associated pneumonia (VAP) treated with polymyxin B found no decreased susceptibility to this drug during therapy despite the non eradication of P. aeruginosa from respiratory secretions of some patients.

A total of 11 patients with VAP due to P. aeruginosa (n = 8) or Acinetobacter spp. (n = 3), diagnosed according to criteria described elsewhere (1), with only those presenting ≥10^5 CFU/ml in tracheal aspirate considered, were subjected to daily tracheal aspiration from the day before starting polymyxin B up to day 15 or death. The polymyxin B MIC was determined using the agar dilution method. P. aeruginosa ATCC 27853 was used as a quality control strain. The first and last isolates recovered from tracheal aspirates of each patient were subjected to molecular typing by pulsed-field gel electrophoresis, using the restriction endonuclease SpeI for P. aeruginosa and Smal for Acinetobacter spp.

Baseline characteristics, treatment, and outcomes for each patient are shown in Table 1. During polymyxin B treatment, no patient presented an isolate with a MIC >2-fold higher than that for the initial isolate. In two patients, the MICs of the baseline P. aeruginosa isolates (before the initiation of therapy) were not available, but the isolates of both patients recovered after the second day of therapy presented an MIC of 1 μg/ml. The first and last recovered isolates of all patients were confirmed to be the same clonotype by pulsed-field gel electrophoresis. Although no isolate presented an MIC >2-fold higher than that of the corresponding initial isolate prior to intravenous polymyxin B treatment, it is unknown whether the population analysis profiles of the isolates changed after treatment with intravenous polymyxin B.

Of note, in a difference from the study of Lee et al., most of

TABLE 1. Baseline characteristics, treatments, and outcomes for patients with VAP treated with intravenous polymyxin B

<table>
<thead>
<tr>
<th>Case</th>
<th>Age (yr/sex)</th>
<th>ECC, ml/min</th>
<th>Bacterium; polymyxin B MIC (mg/ml)</th>
<th>Treatment</th>
<th>Antibiotic coadministered</th>
<th>Bacterial eradication</th>
<th>Clinical outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dose (mg/kg)</td>
<td></td>
<td>time from initiation of polymyxin B to outcome, days</td>
<td>from initiation of polymyxin B to outcome (death or ICU discharge), days</td>
</tr>
<tr>
<td>1</td>
<td>80/F</td>
<td><10</td>
<td>P. aeruginosa; NA</td>
<td>0.83/48</td>
<td>MEM (days 1–8)</td>
<td>No</td>
<td>Death; 8</td>
</tr>
<tr>
<td>2</td>
<td>52/M</td>
<td>83</td>
<td>P. aeruginosa; NA</td>
<td>1.25/12</td>
<td>LVX, VAN (after day 9)</td>
<td>No</td>
<td>Survival; 16</td>
</tr>
<tr>
<td>3</td>
<td>88/M</td>
<td>84</td>
<td>P. aeruginosa; 1</td>
<td>1.25/12</td>
<td>IPM (days 1–5)</td>
<td>No</td>
<td>Death; 5</td>
</tr>
<tr>
<td>4</td>
<td>42/M</td>
<td>98</td>
<td>P. aeruginosa; 2</td>
<td>1.0/12</td>
<td>CAZ (days 1 and 2); SXT (days 1–9), and CIP (days 3–9)</td>
<td>No</td>
<td>Death; 9</td>
</tr>
<tr>
<td>5</td>
<td>72/F</td>
<td>60</td>
<td>P. aeruginosa; 2</td>
<td>1.0/12</td>
<td>ATM (day 8–15)</td>
<td>No</td>
<td>Death; 64</td>
</tr>
<tr>
<td>6</td>
<td>49/M</td>
<td><10</td>
<td>Acinetobacter spp.; 1</td>
<td>1.25/12</td>
<td>MEM (days 1–14)</td>
<td>Yes; 14</td>
<td>Survival; 40</td>
</tr>
<tr>
<td>7</td>
<td>86/F</td>
<td>34</td>
<td>Acinetobacter spp.; 1</td>
<td>1.0/12</td>
<td>None</td>
<td>Yes; 2</td>
<td>Survival; 21</td>
</tr>
<tr>
<td>8</td>
<td>76/M</td>
<td>66</td>
<td>Acinetobacter spp.; 1</td>
<td>1.0/12</td>
<td>ATM (days 1–14)</td>
<td>Yes; 2</td>
<td>Death; 15</td>
</tr>
<tr>
<td>9</td>
<td>72/M</td>
<td>26</td>
<td>P. aeruginos; 1</td>
<td>1.5/48</td>
<td>None</td>
<td>No</td>
<td>Death; 87</td>
</tr>
<tr>
<td>10</td>
<td>65/M</td>
<td><10</td>
<td>P. aeruginosa; 0.5</td>
<td>0.5/48</td>
<td>VAN (days 7–15)</td>
<td>No</td>
<td>Death; 30</td>
</tr>
<tr>
<td>11</td>
<td>48/M</td>
<td>246</td>
<td>P. aeruginosa; 1</td>
<td>1.0/12</td>
<td>SXT (days 1–14)</td>
<td>No</td>
<td>Survival; 42</td>
</tr>
</tbody>
</table>

* Abbreviations: M, male; F, female; ATM, aztreonam; CAZ, ceftazidime; CIP, ciprofloxacin; IPM, imipenem; LVX, levofloxacin; MEM, meropenem; SXT, trimethoprim-sulfamethoxazole; VAN, vancomycin; ECC, estimated creatinine clearance (estimated by the Cockcroft-Gault formula); NA, not available.

* Data for eight patients are reported elsewhere (8). MICs of isolates recovered before therapy are shown. All isolates were susceptible to polymyxin B only, with the exception of the isolate from patient 4 (susceptible to ciprofloxacin and amikacin) and that from patient 5 (susceptible to amikacin). An isolate with a polymyxin B MIC of ≤2 μg/ml was considered susceptible (3).

* For eight patients, the polymyxin B dose and antibiotic coadministered are reported elsewhere (8).

* Bacterial eradication is defined as a tracheal aspirate that was negative for the infecting organism, followed by subsequent negative cultures.

* Except for those who died before the end of the treatment, patients received polymyxin B therapy for 14 days.

* First dose, 3.0 mg/kg of body weight.

* First dose, 2.0 mg/kg of body weight.
our patients received combination therapy, and although all but one isolate showed in vitro resistance to these second agents, it might have had some impact on microbiological outcomes. Additionally, our study included only patients with VAP due to P. aeruginosa and Acinetobacter spp. but none with K. pneumoniae.

Currently there is no human pharmacokinetic study assessing concentrations of polymyxins in lung epithelial lining fluids after administration intravenously or by inhalation (7, 9). Eight patients in our study had plasma polymyxin B concentrations measured, and unbound plasma concentrations of polymyxin B were in the vicinity of the pathogens’ MICs or even lower (8). However, the fact that all Acinetobacter species isolates, which presented MICs similar to those of P. aeruginosa isolates, were eradicated from tracheal aspirate might suggest that polymyxin B reached inhibitory concentrations in the epithelial lining fluids, although the addition of meropenem and aztreonam to the therapy of two patients may have contributed to eradication, despite the finding of in vitro resistance to these agents by Acinetobacter species isolates.

In summary, our preliminary observations have neither confirmed in vitro findings nor in vivo emergence of resistance to polymyxin B therapy during treatment with this drug. However, considering previous in vitro studies and the recent report of Lee et al., we believe that further studies with a large number of patients are required to assess this phenomenon.

This work was supported by The National Council for Scientific and Technological Development (CNPq), Ministry of Science and Technology, Brazil (152041/2006-0), and the Fundo de Incentivo a Pesquisa e Eventos (FIPE), Hospital de Clínicas de Porto Alegre, Brazil. A.P.Z. has received speaking honoraria from Forest Laboratories, United Kingdom. J.L. is an Australian National Health and Medical Research Council R. Douglas Wright Research Fellow. A.P.Z., A.L.B., and L.Z.G. receive financial support from the National Council for Scientific and Technological Development (CNPq), Ministry of Science and Technology, Brazil.

All other authors have no financial support to declare.

REFERENCES

Alexandre P. Zavascki*
Infectious Diseases Unit
Hospital de Clínicas de Porto Alegre
2350 Ramiro Barcelos St.
Porto Alegre, Rio Grande do Sul, Brazil 90.035-903

Jian Li
Roger L. Nation
Facility for Anti-infective Drug Development and Innovation
Drug Delivery, Disposition and Dynamics
Monash Institute of Pharmaceutical Sciences
Monash University
381 Royal Parade
Parkville, Victoria 3052, Australia

Silvana V. Superti
Microbiology Service
Hospital São Lucas da Pontifícia
Universidade Católica do Rio Grande do Sul
Porto Alegre, Brazil

Afonso L. Barth
Larissa Lutz
Microbiology Unit
Clinical Pathology Service
Hospital de Clínicas de Porto Alegre
Porto Alegre, Brazil

Fabiano Ramos
Infectious Diseases Service
Hospital São Lucas da Pontifícia
Universidade Católica do Rio Grande do Sul
Porto Alegre, Brazil

Márcio M. Boniatti
Intensive Care Unit
Hospital de Clínicas de Porto Alegre
Porto Alegre, Brazil

Luciano Z. Goldani
Infectious Diseases Unit
Hospital de Clínicas de Porto Alegre
Porto Alegre, Brazil
*Phone and fax: 55 51 21018152
E-mail: azavascki@hcpa.ufrgs.br

* Published ahead of print on 8 July 2009.