Physeal injuries in children’s and youth sports: reasons for concern?

D Caine, J DiFiori, N Maffulli

A systematic review of the literature on the frequency and characteristics of sports related growth plate injuries affecting children and youth in organised sport was carried out. Both acute and chronic physeal injuries related to participation in sports have been reported to occur, although injury incidence data are somewhat limited. Of particular concern is the growing number of stress related physeal injuries, including those affecting the lower extremities. Although most physeal injuries appeared to resolve with treatment and rest, there is also evidence of growth disturbance and deformity. Possible injury risk factors and countermeasures are discussed, and suggestions for directing future research provided.

Participation in children’s and youth sports is widespread in Western culture. Many of these youngsters initiate year round training and specialisation in their sports at a very early age. Preteens training at regional training centres or with high school and club teams in sports such as gymnastics may train 20 or more hours a week. In addition, many youngsters travel with select soccer or hockey teams to other towns and communities to compete on a regular basis. Increased involvement and difficulty of skills practiced at an early age and continued through the years of growth, with the level of intensity required to be competitive, raises concern about risk and severity of injury to young athletes.

In particular, the concern is that the tolerance limits of the physis may be exceeded by the mechanical stresses of sports such as football and hockey or by the repetitive physical loading required in sports such as baseball, gymnastics, and distance running.1,2 Disturbance of physeal growth as a result of injury can result in length discrepancy, angular deformity, or altered joint mechanics and may cause significant long term disability. This article describes the present status of knowledge on the frequency and characteristics of physeal injuries affecting children and youth involved in organised sport. In doing so, possible risk factors are elucidated that may assist in developing specific recommendations for injury prevention and for directing future research.

ANATOMY AND PHYSIOLOGY OF THE PHYSIS

The growing parts of the bone include the physis and the epiphysis. Two types of epiphyses are found in the extremities: traction and pressure. Traction epiphyses (or apophyses) are located at the site of attachment of major muscle tendons to bone and are subjected primarily to tensile forces. The apophysis of the tibial tubercle provides an example (fig 1). The apophyses contribute to bone shape but not to longitudinal growth.3 As a result, acute or chronic injuries affecting traction growth plates are not generally associated with disruption of longitudinal bone growth. Overuse apophyseal conditions, such as Osgood-Schlatter disease, Sever’s disease, and medial epicondylopathy in the throwing arm, are common in young athletes and may be the source of significant discomfort and time lost from training.

Pressure epiphyses are situated at the end of long bones and are subjected to compressive forces. The epiphyses of the distal femur and proximal tibia are examples of pressure epiphyses (fig 1). The growth plate or physis is located between the epiphysis and metaphysis and is the essential mechanism of endochondral ossification.4 In contrast with traction growth plates, injury to pressure epiphyses and their associated growth plates may result in growth disturbance. Physeal injuries of the latter type sustained in organised sport are the focus of this article.

METHODS

A literature review was undertaken using Medline and SPORTDiscus. The search was restricted to English language articles. Medical subject headings and text words included: growth plate, physeal, epiphyseal, physeal, athletic injuries, sports, injury, and injuries. Each title was searched manually for any focus on growth plate injuries involving the long or tubular bones of young athletes. Titles focusing on sport related apophyseal injuries were excluded given the focus of the present review on injuries that may adversely affect growth. The reference lists of selected articles were searched using the same criteria.

Most reports retrieved were case reports or case series investigations where the characteristics of a series of people who were injured are detailed. These investigations allow a comprehensive account of the characteristics and relative frequency of sport related physeal injuries. However, they do not allow calculation of incidence rates or the identification of risk factors unless denominator data are available. The literature on the epidemiology of paediatric sports injuries was next searched in order to obtain, as far as possible, an insight into the prevalence and incidence of growth plate injuries in children’s and youth sports.
Briefly, as explained by Ogden, in the zone of "growth", germinal cells are attached to the epiphysis and obtain their vascular supply from the epiphyseal artery. Longitudinal growth is accomplished by the proliferation of these cells. The zone of growth is the area of greatest concern with any fracture involving the growth plate, as damage to cells in this zone may have long-term consequences for normal growth patterns.

The next functional area is the zone of cartilage "matura-
tion". Increased extracellular matrix is formed in this zone, primarily between columns. The extracellular matrix exhibits cell mediated biomechanical changes, then calcifies. The cells align in vertical columns as they hypertrophy and are eventually replaced by osteoblasts. Fractures most commonly occur at the junction of calcified and uncalcified hypertrophic cells because it is structurally the weakest portion of the growth plate.

In the zone of cartilage "transformation", the cartilaginous matrix is penetrated by metaphyseal vessels, which break down the transverse cartilaginous septa, allowing invasion of mature cell columns. The cartilage and the bone are remodelled, removed, and replaced by a more mature, secondary spongiosa, eventually containing no remnants of the cartilaginous precursor.

SUSCEPTIBILITY TO INJURY
Physesal injuries may produce irreversible damage to the growing cells, resulting in growth disturbance. Growth plate cartilage is less resistant to stress than adult articular cartilage. It is also less resistant than adjacent bone to shear and tension forces. Therefore, when disruptive forces are applied to an extremity, failure may occur through the physis. In addition, the physis may be 2–5 times weaker than the surrounding fibrous tissue. For these reasons, injury mechanisms that in an adult may result in a complete tear of a ligament or in a joint dislocation may produce a separation of the growth plate in a child.

The susceptibility of the growth plate to injury appears to be especially pronounced during periods of rapid growth. Research on the development of physeal cartilage in animals shows a decrease in physical strength during pubescence. The data on humans are consistent with these findings. An increase in the rate of growth is accompanied by structural changes that result in a thicker and more fragile plate. In addition, bone mineralisation may lag behind bone linear growth during the pubescent growth spurt, rendering the bone temporarily more porous and more subject to injury.

Studies of the incidence of physeal injuries in humans indicate an increased occurrence of fractures during pubescence, with the peak fracture rate probably occurring at the time of peak height velocity. It has been proposed that the growth spurt may also increase susceptibility to growth plate injury by causing an increase in muscle-tendon tightness about the joints and an accompanying loss of flexibility. However, this concept is controversial. Longitudinal growth occurs initially in the long bones of the extremities, and the muscle-tendon units elongate in response to this change. This may create a temporary disparity between muscle-tendon and bone lengths. If an excessive muscular stress is applied, a muscle-tendon imbalance is produced that may predispose to injury. Because the joint, and in particular the growth cartilage, is the weak link in this assembly, it is believed that the risk of injury may be increased at this site during the growth spurt. However, Feldman et al have questioned whether a reduction in flexibility occurs during the adolescent growth spurt.

ACUTE PHYSEAL INJURY
Although more elaborate classification systems for describing acute physeal injuries are available, the system most widely
used was developed by Salter and Harris.21 Figure 2 shows the different types of injury in this classification. Type I injuries show a complete separation of the epiphysis from the metaphysis without any bone fracture. The germinal cells of the growth plate remain with the epiphysis, and the calcified layer remains with the metaphysis. In type II, the most common physial injuries, the line of separation extends along the growth plate, then out through a portion of the metaphysis, producing a triangular shaped metaphyseal fragment sometimes referred to as the Thurston Holland sign. Type III, which is intra-articular, extends from the joint surface to the weak zone of the growth plate and then extends along the plate to its periphery. In type IV, often involving the distal humerus, a fracture extends from the joint surface through the epiphysis, across the full thickness of the growth plate and through a portion of the metaphysis, thereby producing a complete split. In type V, a relatively uncommon injury, there is a compression of the growth plate, thereby extinguishing further growth.

Prognosis for types I and II fractures is good if the germinal cells remain with the epiphysis, and circulation is unchanged. However, these injury types are not as innocuous as originally believed, and can be associated with risk of growth impairment.4 11 14 22–25 Figure 3 provides a radiographic depiction of a Salter-Harris type II injury in a young male gymnast. Type III injuries have a good prognosis if the blood supply in the separated portion of the epiphysis is still intact and if the fracture is not displaced. Surgery is sometimes necessary to restore the joint surface to normal. In type IV injuries, surgery is needed to restore the joint surface to normal and to perfectly align the growth plate. Type IV injuries have a poor prognosis unless the growth plate is completely and accurately realigned.

Studies of more than 200 specimens of simultaneously occurring physial fractures in children (usually from traumatic amputation) and skeletally immature zoo animals indicate that the typical physial fracture occurs within the hypertrophic zone.9 The most common level was the junction of calcified and uncalcified hypertrophic cells. However, variation in fracture propagation may occur that relates to extent of physical maturity, the amount of force applied, rates of loading, and particularly the application of forces.9 29 30 In addition to the variable undulation of the fracture plane in physial injuries, an important finding is microdisruption in the germinal zone that is separate from the main cleavage plane.3

Approximately 15% of all fractures in children involve the physes.4 31 Acute growth plate injuries such as those incurred by falling off bicycles, skateboards, playground equipment, out of trees, and so forth, are common to many childhood misadventures. In one large population based study of growth plate injuries, the largest single group of physial fractures occurred as a result of a fall, usually while running or playing around furniture or playground equipment.14

Competitive sports—for example, hockey, football, baseball—accounted for 33.5% and recreational activities—biking, skateboarding, skiing—for 21.7% of physial injuries in this study. In several studies, organised sports accounted for more physial injuries than recreational activities.11 14 16 25 32 33 American football is the sport most often connected with acute physial fractures; however, most other sports are also represented.14 24 25 27 Motor vehicle accidents, including motorcycles and all-terrain vehicles, also account for a significant number of especially severe physial injuries.

Reports on acute physial conditions affecting young athletes are abundant and arise primarily from case reports and case series data involving mostly male athletes (table 1).14–46 These injuries were incurred in a variety of sports, although football is the sport most often reported. Injury outcome was generally good with growth disturbance reported in only eight of 50 cases; however, the length of follow up was brief or not reported in some cases. Most of the athletes were advanced in age (13–17 years), limiting the amount of growth disturbance possible.

Table 2 summarises case series reporting growth plate fractures.11 14 16 22 24 25 27 32 33 67–74 With the exception of two studies that reported on only sport related physial injuries,
<table>
<thead>
<tr>
<th>Study</th>
<th>No of cases</th>
<th>Age (years)</th>
<th>Injury location</th>
<th>Salter-Harris injury type</th>
<th>Sport</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rogers</td>
<td>1 M</td>
<td>12</td>
<td>Distal femur</td>
<td>I</td>
<td>Football</td>
<td>Follow up not reported; "satisfactory"</td>
</tr>
<tr>
<td>Rovere</td>
<td>1 M</td>
<td>12</td>
<td>Distal femur</td>
<td>I</td>
<td>Football</td>
<td>Follow up not reported; "satisfactory"</td>
</tr>
<tr>
<td>Ryan</td>
<td>5 M</td>
<td>14-16</td>
<td>Distal radius</td>
<td>II</td>
<td>Weight lifting</td>
<td>Follow up 5-27 months; "significant leg length discrepancy in one case"</td>
</tr>
<tr>
<td>Simpson</td>
<td>3 M</td>
<td>15-17</td>
<td>Distal femur</td>
<td>I</td>
<td>Football</td>
<td>Follow up 4 months; no growth disturbance evident</td>
</tr>
<tr>
<td>Gumbs</td>
<td>2 M</td>
<td>12, 14</td>
<td>Distal radius and ulna</td>
<td>II</td>
<td>Weight lifting</td>
<td>Follow up time not reported; "healing was uneventful"</td>
</tr>
<tr>
<td>Collins</td>
<td>1 M</td>
<td>10</td>
<td>Distal tibia</td>
<td>II</td>
<td>Soccer</td>
<td>Follow up 1 year; "return to normal activity without problems"</td>
</tr>
<tr>
<td>Lemire</td>
<td>1 M</td>
<td>15</td>
<td>Medial clavicle</td>
<td>I</td>
<td>Hockey</td>
<td>Follow up 1 year; "return to normal activity without problems"</td>
</tr>
<tr>
<td>Simpson</td>
<td>1 M</td>
<td>11</td>
<td>Distal radius</td>
<td>II</td>
<td>Basketball</td>
<td>Follow up 8 years; premature closure</td>
</tr>
<tr>
<td>Jenkins</td>
<td>1 M</td>
<td>13</td>
<td>Bilateral distal radius; distal tibia</td>
<td>II</td>
<td>Football</td>
<td>Follow up not reported</td>
</tr>
<tr>
<td>Abrams</td>
<td>1 F</td>
<td>15</td>
<td>Proximal fibula</td>
<td>III</td>
<td>Gymnastics</td>
<td>Follow up 7 weeks; "progressive healing"</td>
</tr>
<tr>
<td>Spinella</td>
<td>1 F</td>
<td>15</td>
<td>Distal tibia</td>
<td>III</td>
<td>Figure skating</td>
<td>Follow up 3 years; no growth disturbance</td>
</tr>
<tr>
<td>Weiss</td>
<td>1 M</td>
<td>14</td>
<td>Distal tibia</td>
<td>III</td>
<td>Football</td>
<td>Follow up 1 year; "uneventful"</td>
</tr>
<tr>
<td>Thomas</td>
<td>1 M</td>
<td>16</td>
<td>Distal radius</td>
<td>I</td>
<td>Weight lifting</td>
<td>Follow up 6 months; "some early closure of the physis was evident on comparison studies"</td>
</tr>
<tr>
<td>Keret</td>
<td>1 M</td>
<td>13</td>
<td>Proximal tibia</td>
<td>V</td>
<td>Football</td>
<td>Follow up 2 years; premature closure; also associated premature partial closure of the distal femoral physis</td>
</tr>
<tr>
<td>Bak</td>
<td>1 M</td>
<td>14</td>
<td>Proximal tibia</td>
<td>II</td>
<td>Gymnastics</td>
<td>Follow up 9 months; premature closure</td>
</tr>
<tr>
<td>Meyers</td>
<td>1 M</td>
<td>15</td>
<td>Distal femur</td>
<td>II</td>
<td>Football</td>
<td>Follow up 1 year; normal anatomical alignment and equal leg lengths</td>
</tr>
<tr>
<td>Hartley</td>
<td>1 M</td>
<td>15</td>
<td>Proximal tibia</td>
<td>IV</td>
<td>Soccer</td>
<td>Follow up 4 months</td>
</tr>
<tr>
<td>Toto</td>
<td>1 M</td>
<td>17</td>
<td>Distal fibula</td>
<td>I</td>
<td>Baseball</td>
<td>Follow up not reported</td>
</tr>
<tr>
<td>Banks</td>
<td>2 M</td>
<td>16, 17</td>
<td>Proximal tibia</td>
<td>II</td>
<td>Basketball</td>
<td>Follow up 3 months - 2 years; no growth disturbance in the boy followed for 2 years</td>
</tr>
<tr>
<td>Decoster</td>
<td>1 M</td>
<td>14</td>
<td>Distal femur</td>
<td>III</td>
<td>Football</td>
<td>Follow up 1 year; "significant growth discrepancy unlikely because he was so near skeletal maturity"</td>
</tr>
<tr>
<td>Veenema</td>
<td>2 M</td>
<td>15</td>
<td>Distal radius</td>
<td>V</td>
<td>Football</td>
<td>Follow up 21 months; premature closure</td>
</tr>
<tr>
<td>Goldberg</td>
<td>1 M</td>
<td>11</td>
<td>Distal femur</td>
<td>III</td>
<td>Football</td>
<td>Follow up 2 years; non-union Premature closure of the lateral part of the proximal tibia subsequent to a sports injury at age 6</td>
</tr>
<tr>
<td>Beck</td>
<td>1 M</td>
<td>18</td>
<td>Proximal tibia</td>
<td>III</td>
<td>Football</td>
<td>Follow up 1 year; "significant growth discrepancy unlikely because he was so near skeletal maturity"</td>
</tr>
<tr>
<td>Brone & Wroble</td>
<td>3 M</td>
<td>14-16</td>
<td>Distal femur</td>
<td>III</td>
<td>Football</td>
<td>Follow up 2–3 years; no limb length discrepancy or limb deformity</td>
</tr>
<tr>
<td>Veenema</td>
<td>2 M</td>
<td>15</td>
<td>Distal femur</td>
<td>III</td>
<td>Football</td>
<td>Follow up 4 months; "no evidence of limb length discrepancy or angular deformity"</td>
</tr>
<tr>
<td>Mudgal</td>
<td>1 M</td>
<td>16</td>
<td>Proximal tibia</td>
<td>I</td>
<td>Basketball</td>
<td>Follow up 6 months; "no evidence of limb length discrepancy or angular deformity"</td>
</tr>
<tr>
<td>Shinro</td>
<td>1 M</td>
<td>13</td>
<td>Proximal tibia</td>
<td>II (right) I (left)</td>
<td>Basketball</td>
<td>Follow up 5.5 years; "no deformities or differences in leg length were observed"</td>
</tr>
<tr>
<td>Maffulli</td>
<td>2 M</td>
<td>11, 14</td>
<td>Proximal phalanx (all)</td>
<td>III</td>
<td>Judo, soccer</td>
<td>Follow up 3-4 years; "no evidence of growth disturbance or osteoarthritis"</td>
</tr>
<tr>
<td>Ozger</td>
<td>1 M</td>
<td>17</td>
<td>Proximal tibia</td>
<td>III</td>
<td>Basketball</td>
<td>Follow up 4 months</td>
</tr>
<tr>
<td>Whaaa</td>
<td>1 M</td>
<td>16</td>
<td>Proximal tibia</td>
<td>I</td>
<td>Gymnastics</td>
<td>Follow up 27 months; "no angular deformity"</td>
</tr>
<tr>
<td>Egung</td>
<td>1 M</td>
<td>16</td>
<td>Proximal tibia</td>
<td>II</td>
<td>Basketball</td>
<td>Follow up 27 months; "no angular deformity"</td>
</tr>
<tr>
<td>Goga & Gongal</td>
<td>3 M</td>
<td>Distal femur</td>
<td>III</td>
<td>Soccer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jenkins</td>
<td>1 M</td>
<td>Distal tibia</td>
<td>II</td>
<td>Soccer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jenkins</td>
<td>1 M</td>
<td>Distal tibia</td>
<td>II</td>
<td>Soccer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Samssoni</td>
<td>1 F</td>
<td>14</td>
<td>Distal femur</td>
<td>II</td>
<td>Cricket</td>
<td>Follow up 6 months; "early indication of growth arrest on the medial side"</td>
</tr>
</tbody>
</table>

The sex of the patients is indicated: M, male; F, female.
the studies reviewed reveal a wide range in the proportion of fractures associated with organised sports (5.6–72.8%), and a wide range that were associated with growth disturbance (0–75%).

Most cohort studies reporting on the nature and incidence of paediatric sports injuries describe the frequency of fractures without specifying the frequency or severity of physeal fractures. There is also rarely any follow up to indicate the outcome of physeal injuries. Table 3 provides a summary of cohort studies that do provide information on the frequency of physeal fractures in several sports. Perusal of these reports reveals that 1–30% of paediatric sports injuries are acute physeal injuries. Of concern in these reports is the finding that sprains were common injuries and that not all injuries were seen by a doctor. As discussed above, an injury that would cause a sprain in an adult can be a potentially serious growth plate injury in a child.

CHRONIC PHYSEAL INJURY

An accumulating number of clinical reports indicate that sport training, if of sufficient duration and intensity, may precipitate pathological changes of the growth plate and, in extreme cases, produce growth disturbance. This injury appears to occur through repetitive loading, which alters metaphyseal perfusion and in so doing interferes with the mineralisation of the hypertrophied chondrocytes, which typically occurs in the zone of provisional calcification. The hypertrophic zone continues to widen because of constant growth in the germinal and proliferative zones, as shown experimentally by Jaramillo et al. MRI findings of distal radial physeal injury reported in Chinese acrobats and young competitive gymnasts resemble the experimentally induced injuries described by Jaramillo et al.

Briefly, as explained by Ogden, the widening of the growth plate within the hypertrophic zone is usually temporary, as the resting and dividing cellular layers of the growth plate, and the attendant epiphyseal and metaphyseal blood supplies, are essentially undisturbed. However, in some situations, this ischaemic condition may lead to osseous necrosis and deformity within the developing ossification centre and to growth irregularities in the physis. These changes may be localised and cause asymmetric growth, or they may involve the entire physis and result in an overall slowdown of the rate of growth or even complete cessation of growth. In either case, premature closure of some or all of the physis may occur.

Baseball pitchers were perhaps the first young athletes recognised to present with stress related injury of the physis. Table 4 shows studies reporting stress changes or stress fracture of the proximal humeral physis in young baseball pitchers. Often associated with persistent pain in the throwing arm, stress changes of the proximal humeral

Table 2 Case series including data on sports related physeal fractures

<table>
<thead>
<tr>
<th>Study</th>
<th>Total no of growth plate fractures</th>
<th>Location</th>
<th>No of growth plate fractures associated with organised sports</th>
<th>No of sports related growth plate fractures associated with growth disturbance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Larson"</td>
<td>84</td>
<td>All</td>
<td>59 (70)</td>
<td>7 (35)</td>
</tr>
<tr>
<td>Stephens"</td>
<td>20</td>
<td>Distal femur</td>
<td>15 (100)</td>
<td>3 (20)</td>
</tr>
<tr>
<td>McManama"</td>
<td>135</td>
<td>All</td>
<td>35 (26)</td>
<td>13 (37)</td>
</tr>
<tr>
<td>Lombardo"</td>
<td>34</td>
<td>Distal femur</td>
<td>4 (12)</td>
<td>3 (75)</td>
</tr>
<tr>
<td>Goldberg"</td>
<td>53</td>
<td>Distal tibia</td>
<td>19 (33)</td>
<td>5 (26)</td>
</tr>
<tr>
<td>Burkhard"</td>
<td>28</td>
<td>Distal tibia</td>
<td>8 (28)</td>
<td>2 (25)</td>
</tr>
<tr>
<td>Benton"</td>
<td>203</td>
<td>All</td>
<td>79 (39)</td>
<td>4 (5)</td>
</tr>
<tr>
<td>Speer"</td>
<td>134</td>
<td>All</td>
<td>29 (22)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Cass"</td>
<td>18</td>
<td>Distal tibia</td>
<td>1 (6)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Krueger-Franke"</td>
<td>12</td>
<td>Lower extremity</td>
<td>85 (100)</td>
<td>9 (11)</td>
</tr>
<tr>
<td>Lalone"</td>
<td>9</td>
<td>Distal tibia</td>
<td>3 (25)</td>
<td>1 (33)</td>
</tr>
<tr>
<td>Peterson"</td>
<td>95</td>
<td>All</td>
<td>327 (34)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Fischer"</td>
<td>378</td>
<td>Hand</td>
<td>129 (34)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Remeus"</td>
<td>6</td>
<td>Proximal tibia</td>
<td>1 (17)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Nenopaulos"</td>
<td>92</td>
<td>Distal tibia</td>
<td>22 (24)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Nenopaulos"</td>
<td>9</td>
<td>Distal tibia</td>
<td>3 (33)</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>

Values in parentheses are percentages.

Table 3 Cohort studies including data on sports related physeal injuries

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Duration</th>
<th>Sample</th>
<th>No of participants</th>
<th>No of injuries</th>
<th>% physeal injuries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roser"</td>
<td>Prospective</td>
<td>1 season</td>
<td>Football</td>
<td>2048</td>
<td>48</td>
<td>3</td>
</tr>
<tr>
<td>Chambers"</td>
<td>Prospective</td>
<td>1 year</td>
<td>Six sports</td>
<td>2803</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>Zarinz"</td>
<td>Prospective</td>
<td>1 year</td>
<td>All sports</td>
<td>25 512</td>
<td>1495</td>
<td>1</td>
</tr>
<tr>
<td>Goldberg"</td>
<td>Prospective</td>
<td>1 season</td>
<td>Football</td>
<td>456</td>
<td>67</td>
<td>3</td>
</tr>
<tr>
<td>Turza"</td>
<td>Prospective</td>
<td>1 season</td>
<td>All sports</td>
<td>62 800</td>
<td>789</td>
<td>10</td>
</tr>
<tr>
<td>Goldberg"</td>
<td>Prospective</td>
<td>1 season</td>
<td>Football</td>
<td>51 28</td>
<td>257</td>
<td>5</td>
</tr>
<tr>
<td>Caine"</td>
<td>Prospective</td>
<td>1 year</td>
<td>Gymnastics</td>
<td>50</td>
<td>147</td>
<td>6.8</td>
</tr>
<tr>
<td>Risse"</td>
<td>Prospective</td>
<td>1 year</td>
<td>Weight training</td>
<td>217</td>
<td>27</td>
<td>7.4</td>
</tr>
<tr>
<td>Andreassen"</td>
<td>Prospective</td>
<td>1 season</td>
<td>Soccers</td>
<td>12 907</td>
<td>132</td>
<td>6</td>
</tr>
<tr>
<td>Linder"</td>
<td>Prospective</td>
<td>2 seasons</td>
<td>Football</td>
<td>340</td>
<td>55</td>
<td>9.1</td>
</tr>
<tr>
<td>Koll"</td>
<td>Prospective</td>
<td>1 year</td>
<td>Gymnastics</td>
<td>162</td>
<td>321</td>
<td>11.5</td>
</tr>
<tr>
<td>Koll"</td>
<td>Prospective</td>
<td>18 months</td>
<td>Gymnastics</td>
<td>64</td>
<td>349</td>
<td>12.3</td>
</tr>
<tr>
<td>Stuart"</td>
<td>Prospective</td>
<td>1 season</td>
<td>Football</td>
<td>915</td>
<td>55</td>
<td>7</td>
</tr>
</tbody>
</table>

"Hospital based study.

†Includes acute and overuse physeal injuries.

The bibliographic references for this section are:

2. Ogden et al. (1993).
5. Goldberg et al. (1996).
10. Andreassen et al. (2001).
growth plate, or “Little league shoulder”, represent sequelae of repetitive traction and rotational forces across the epiphysis and growth plate. In most cases, subjects improved with rest and were able to return to baseball, albeit in some cases to a position other than as pitcher. In one instance there was premature closure of the proximal humeral physis.

Similar cases of stress related proximal humeral physeal widening (Salter-Harris type 1 fractures) have been reported in other young athletes involved in overhead sports including: cricket, gymnastics, badminton, and swimming and volleyball. Johnson and Houchin suggests that this condition may be more appropriately termed “adolescent athlete’s shoulder.” Chronic physeal injuries affecting the distal humerus and proximal radius of young baseball players are also documented. Stress related physeal fractures of the middle phalanx of the finger have also recently been reported in young sport climbers.

Table 5 summarises case data on stress related lower extremity physeal injuries involving paediatric athlete participants representing a variety of sports and activities. In these cases, diagnosis of physeal stress fracture was based on widening of the physeal or irregularity of the metaphyseal line or fragmentation or separation of the metaphysis. Symptoms arose primarily from running related activities, including long distance running. Most subjects improved with rest and were able to return to their sport. However, in one case there was a premature closure of the right proximal tibial growth plate, and in another, bilateral varus deformity of the knees. In the latter case, the subject was non-compliant and continued vigorous tennis training despite physician prescription for rest.

Table 4: Pathological changes involving the proximal humeral physis in baseball players

<table>
<thead>
<tr>
<th>Study</th>
<th>No of subjects</th>
<th>Age range</th>
<th>Radiographic changes involving the proximal humeral physis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dotter</td>
<td>1</td>
<td>12</td>
<td>Physeal widening, adjacent osteoporosis</td>
</tr>
<tr>
<td>Adams</td>
<td>5</td>
<td>13–15</td>
<td>Accelerated growth and physeal widening, demineralisation, and apparent fragmentation without aseptic necrosis</td>
</tr>
<tr>
<td>Torg</td>
<td>1</td>
<td>12</td>
<td>Physeal widening</td>
</tr>
<tr>
<td>Cahill</td>
<td>1</td>
<td>–</td>
<td>Physeal widening with metaphyseal bone separation</td>
</tr>
<tr>
<td>Tullors</td>
<td>1</td>
<td>12</td>
<td>Osteochondritis with abundant callus formation</td>
</tr>
<tr>
<td>Lipscott</td>
<td>3</td>
<td>–</td>
<td>Physeal widening</td>
</tr>
<tr>
<td>Hansen</td>
<td>1</td>
<td>14</td>
<td>Physeal widening</td>
</tr>
<tr>
<td>Barnett</td>
<td>1</td>
<td>–</td>
<td>Physeal widening</td>
</tr>
<tr>
<td>Albert</td>
<td>1</td>
<td>–</td>
<td>Physeal widening</td>
</tr>
<tr>
<td>Carson</td>
<td>23</td>
<td>11–16</td>
<td>Radiographic widening of the proximal humeral growth plate</td>
</tr>
<tr>
<td>Ricci</td>
<td>1</td>
<td>–</td>
<td>Physeal widening</td>
</tr>
<tr>
<td>Flemming</td>
<td>1</td>
<td>12</td>
<td>Physeal widening</td>
</tr>
</tbody>
</table>

Table 5: Pathological changes involving lower extremity physes in young athletes

<table>
<thead>
<tr>
<th>Study</th>
<th>No of subjects</th>
<th>Age (years)</th>
<th>Activity</th>
<th>Radiographic changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cahill</td>
<td>1</td>
<td>M 15.5</td>
<td>Long distance running</td>
<td>Widening of proximal tibial growth plate with metaphyseal bone separation</td>
</tr>
<tr>
<td>Percy</td>
<td>1</td>
<td>M 16</td>
<td>Long distance running</td>
<td>Widening of first metatarsal growth plate with metaphyseal separation</td>
</tr>
<tr>
<td>Godshall</td>
<td>2</td>
<td>M 14.5</td>
<td>Running during basketball or football training</td>
<td>Widening and a loss of normal architecture of the distal femoral growth plate</td>
</tr>
<tr>
<td>Weber</td>
<td>1</td>
<td>M 15</td>
<td>Tennis</td>
<td>Widening of the distal femoral growth plate with metaphyseal bone separation</td>
</tr>
<tr>
<td>Liebling</td>
<td>1</td>
<td>M 13</td>
<td>Baseball (catcher)</td>
<td>Physeal widening and metaphyseal irregularity in parts of the proximal tibias and distal parts of the femurs</td>
</tr>
<tr>
<td>Wall</td>
<td>1</td>
<td>F 11</td>
<td>Gymnastics</td>
<td>Knee MRI revealed severe widening of the proximal tibial growth plate</td>
</tr>
<tr>
<td>Wall</td>
<td>18 M/F</td>
<td>11.3</td>
<td>Soccer, baseball, football</td>
<td>Mild growth plate widening in two cases, although all subjects had chronic ankle pain and tenderness to palpation localised to the distal tibial/fibular growth plates</td>
</tr>
<tr>
<td>Sato</td>
<td>1</td>
<td>F 13</td>
<td>Basketball</td>
<td>Premature closure of the lateral side of the right proximal tibial growth plate</td>
</tr>
<tr>
<td>Nanni</td>
<td>1</td>
<td>M 15</td>
<td>Rugby ball kicking</td>
<td>Wid separation of the proximal tibial epiphysis, asymmetrically affecting the medial side more than the lateral side</td>
</tr>
<tr>
<td>Laor</td>
<td>6 (3M, 3F)</td>
<td>12.3</td>
<td>Basketball, football</td>
<td>MRI findings showing widening of the distal femoral and/or proximal tibial growth plates</td>
</tr>
</tbody>
</table>

The sex of the patients is indicated: M, male; F, female. MRI, Magnetic resonance imaging.
Notably, in one case, a stress reaction of the proximal tibial growth plate developed in response to extreme repetitive rotational and pressures forces on the epiphysis associated with the practice of rugby place kicking.120 The mechanism of injury is believed to be similar to that seen from overuse in the proximal humeral epiphysis of throwing athletes.120 In a second, similar case,121 stress injury of the distal femoral physis developed in a football place kicker (fig 4). Clinical resolution of symptoms in this case occurred in 23 days.

The most commonly reported physeal stress injuries have been those affecting the distal radial physis of young gymnasts.91 122–137 Most reports describe distal radius stress reaction with a radiographically widened and irregular physis, especially on the metaphyseal side. However, Read122 reported stress fractures of the epiphysis and metaphysis in the distal radii of young female gymnasts. Table 6 summarises case data on stress related physeal injuries involving the distal radius of gymnasts.

Figure 5 shows an illustration of the stress injured distal radial physis of a gymnast. In the studies reviewed (table 6), almost all patients with stress related injury affecting the distal radius recovered with rest, and did not experience premature physeal closure or abnormal growth. However, there are four subsequent reports of distal radius physeal

<table>
<thead>
<tr>
<th>Study</th>
<th>No of subjects</th>
<th>Age (years)</th>
<th>Competitive level</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read122</td>
<td>3 F</td>
<td>13.7</td>
<td></td>
<td>Stress fractures involving the epiphysis and metaphysis of the distal radius</td>
</tr>
<tr>
<td>Roy123</td>
<td>10 F</td>
<td>12.2</td>
<td>II, I, elite</td>
<td>Stress changes, possibly stress fractures of the distal radial growth plate</td>
</tr>
<tr>
<td>1 M</td>
<td>12</td>
<td></td>
<td></td>
<td>Stress induced widening of the distal radial growth plate</td>
</tr>
<tr>
<td>Fliegel124</td>
<td>1 F</td>
<td>14</td>
<td></td>
<td>Premature bilateral closure of the ulnar side of the distal radial growth plate leading to a Madelung-like deformity</td>
</tr>
<tr>
<td>1 M</td>
<td>14</td>
<td></td>
<td></td>
<td>Stress induced widening of the distal radial growth plate</td>
</tr>
<tr>
<td>Vender125</td>
<td>1</td>
<td>17</td>
<td></td>
<td>Salter type I stress fractures of the distal radial growth plate due to chronic repetitive force</td>
</tr>
<tr>
<td>Carter126</td>
<td>4 F</td>
<td>14</td>
<td>National, club</td>
<td>Stress related widening of the growth plates of the distal radius and ulna</td>
</tr>
<tr>
<td>Roy127</td>
<td>17 M</td>
<td>13.5</td>
<td></td>
<td>Chronic overuse leading to premature growth plate closure, resulting in shortening of radius and alterations in the distal radioulnar articulation of the distal radial growth plate</td>
</tr>
<tr>
<td>Albane123</td>
<td>1 M</td>
<td>13</td>
<td>National</td>
<td>Bilateral widening of the distal radial growth plate</td>
</tr>
<tr>
<td>Ruggles125</td>
<td>3 F</td>
<td>13.3</td>
<td></td>
<td>Widening and irregularities of the distal radial growth plate and flaring of the distal radial metaphysis with spurring along its palmar aspect</td>
</tr>
<tr>
<td>Li125</td>
<td>1 F</td>
<td>12</td>
<td>Elite</td>
<td>Stress changes of the distal radial physis</td>
</tr>
<tr>
<td>Frizzell127</td>
<td>1 F</td>
<td>13</td>
<td></td>
<td>Stress fracture (epiphysiolysis) of the distal radial growth plate</td>
</tr>
<tr>
<td>Carter128</td>
<td>1 M</td>
<td>14</td>
<td></td>
<td>Repetitive injury to the distal radial physis leading to hindered radial growth</td>
</tr>
<tr>
<td>Ruggles129</td>
<td>1 F</td>
<td>14</td>
<td></td>
<td>Stress related widening of the growth plates of the distal radius and ulna</td>
</tr>
<tr>
<td>Li125</td>
<td>1 F</td>
<td>13</td>
<td></td>
<td>Stress related widening of the growth plates of the distal radius and ulna</td>
</tr>
<tr>
<td>Frizzell130</td>
<td>1 F</td>
<td>14</td>
<td></td>
<td>Stress changes of the distal radial physis</td>
</tr>
<tr>
<td>Carter131</td>
<td>1 F</td>
<td></td>
<td></td>
<td>Stress fracture (epiphysiolysis) of the distal radial growth plate</td>
</tr>
<tr>
<td>Liebling116</td>
<td>1 M</td>
<td>13</td>
<td>Club level</td>
<td>MRI findings showing widening of the distal radial growth plate and irregularity of the bordering metaphysis bilaterally</td>
</tr>
<tr>
<td>DiFiori117</td>
<td>1 F</td>
<td>10.5</td>
<td>Club level</td>
<td>Bilateral stress injury to the distal radial growth plates</td>
</tr>
<tr>
<td>Howe118</td>
<td>1 F</td>
<td>14</td>
<td>Club level</td>
<td>Premature closure of the right distal radial epiphysis</td>
</tr>
<tr>
<td>Bak119</td>
<td>1 F</td>
<td>14</td>
<td></td>
<td>Radiocarpal opening of the distal radial physis and premature closure of the ulnar part of the distal radial physis</td>
</tr>
<tr>
<td>Brooks120</td>
<td>1 F</td>
<td>21</td>
<td></td>
<td>Traumatic physeal arrest resulting in Madelung deformity</td>
</tr>
</tbody>
</table>

The sex of the patients is indicated: M, male; F, female.

MRI, Magnetic resonance imaging.
arrest in skeletally immature female gymnasts. Evidence of premature growth arrest in these reports was provided by repeated roentgenographic evaluations, which revealed discrepancies in radiographic status of the growth plates in the involved and uninvolved bones and extremities. Figure 6 shows an illustration of partial closure of the right distal radial physis in a 14 year old female gymnast.

There are also analogous reports of stress related premature physeal closure in other young people. Carson and Gasser reported on an 11 year old pitcher with premature closure of the proximal humeral physis (table 4). Attkiss and colleagues described an adolescent pianist with premature closure of the physis of the distal phalanx in the thumb, presumably caused by accumulated repetitive trauma incurred during years of piano playing. These reports are consistent with results from animal studies where prolonged intense physical loading inhibits or stops bone growth.

In one case, radiographs of a young gymnast actually showed radiovolar opening of the distal radial physis and premature closure of the ulnar side of the distal radial physis. A similar finding involving the lateral side of the right proximal tibial growth plate in a young basketball player was described by Sato et al. These data are consistent with results from animal studies that show that an increased compression on one side of an epiphysis may prevent growth on that side, whereas normal growth occurs on the other side.

Prevalence data for stress related physeal injuries are currently provided only for male and female gymnasts (table 7). Eight cross sectional studies report radiographic abnormalities consistent with distal radius physeal stress reaction in 10–85% of subjects. One cross sectional study reported partial closure of the left distal radial growth plate in three gymnasts (two girls and one boy).

Lishen and Jianhua reported on the nature and frequency of distal radius injury among 28 top level Chinese gymnasts who were followed and monitored radiographically over nine years. During this follow up, six of 18 girls and eight of 10 boys developed progressive wrist pathology. Initially, gymnasts developed chronic wrist pain associated with upper extremity weight bearing, with no radiographic abnormalities present. Next, x ray examination revealed stress changes involving the distal radial growth plate, with accompanying decreased range of motion at the

Figure 5 Radiograph (A) and line drawing (B) of the wrist in a symptomatic young female gymnast with findings of widening of the distal radial physis, breaking of the epiphysis, and cystic changes and irregularity of the metaphyseal margin. From Roy et al. Reprinted with permission from The American Orthopedic Society for Sports Medicine.

Figure 6 Fourteen year old female gymnast with chronic right wrist pain. The image on the right is of the symptomatic right wrist and shows partial closure of the right distal radial physis. The ulnar physis remains open. The image on the left is of the asymptomatic left wrist. Both physes of the left wrist remain open. From Caine et al. Reproduced with permission from Elsevier.
Acute growth plate injuries do occur in sport and may affect the radial physis (10%) and istal radial growth plate (85%). Periodisation of training may also help to reduce stress-related physeal injuries. Trained personnel such as certified athletic trainers should be aware of the risks and be able to identify and treat early signs of stress injuries.

Although 71–75% of sport-related growth plate fractures occur in the proximal tibial physis (rugby and tennis players), there are accumulating reports of stress-related physeal injuries affecting young athletes in a variety of sports, including baseball, long distance running, basketball, football, soccer, gymnastics, rugby, tennis, and cricket. Although most of these stress-related conditions resolved without growth complication during short term follow up, there are nonetheless several reports of stress-related premature partial or complete physeal closure.

There are reports of varus changes subsequent to sports-related stress injury to the distal femoral and/or proximal tibial physis (rugby and tennis players). There is a paucity of epidemiological data on the distribution and determinants of growth plate injury in organised sports.

Finally, it is of great concern that many coaches of children and youth sports, although enthusiastic and well meaning volunteers, are otherwise largely uninformed about the growth and development characteristics of children and youth and the appropriate care and prevention of athletic and particularly growth plate injuries.

INJURY COUNTERMEASURES

Although epidemiological data are lacking, it is evident that both acute and chronic physeal injuries occur in children’s and youth sports and that some of these injuries may be associated with growth disturbance. A disturbing finding is the growing number of reports of stress-related physeal injuries affecting young athletes, including those affecting the lower extremities. Coaches and others associated with children’s and youth sports should be educated about the potential for growth plate injury and recommended strategies for prevention. The following preventive measures may be worthy of consideration.

- Training and skill development should be individualised to reduce risk of acute and stress-related physeal injury; in particular, coaches should reduce training loads and delay skill progressions for young athletes experiencing periods of rapid growth. Careful measurement of height at three month intervals will provide coaches with data to estimate growth rate. Height measurements should be taken at the same time of day (preferably in the morning) and should not be taken after a workout.

- Coaches should use a variety of drills or activities during practice to avoid excessively repetitive movements that may result in overuse injury. Emphasis should be on quality of workouts rather than training volume.

- Periodic physical examination should be carried out so that stress-related growth plate and other overuse injuries can be diagnosed at an early stage and modifications made to the training programme to assist in the recovery process; when indicated, radiographs of symptomatic physeal areas should be administered to rule out stress-related changes.

- Although data on injury prevention are lacking, physical conditioning, including strengthening, range of motion, and proprioceptive exercises, may help to reduce both acute and chronic physeal injury.

- Trained personnel such as certified athletic trainers should supervise injury rehabilitation and return to practice.

- Periodisation of training may also help to reduce stress-related physeal injuries and prevent overtraining. This technique involves the systematic cycling of training loads over set periods of time with well defined rest periods.

Table 7 Cross-sectional studies of physeal injuries affecting gymnasts

<table>
<thead>
<tr>
<th>Study</th>
<th>No of subjects</th>
<th>Age (years)</th>
<th>Level</th>
<th>Diagnosis/condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auberge</td>
<td>57 F</td>
<td>14–17</td>
<td>Junior national</td>
<td>Chronic osteoarthritis lesions involving the distal radial growth plate (85%)</td>
</tr>
<tr>
<td></td>
<td>41 M</td>
<td>17–33</td>
<td>Junior national</td>
<td>Chronic osteoarthritis lesions involving the distal radial growth plate (80%)</td>
</tr>
<tr>
<td>Szol</td>
<td>41 M</td>
<td>15–31</td>
<td>National</td>
<td>Distal radial epiphyseal irregularities (58.5%)</td>
</tr>
<tr>
<td>Roy</td>
<td>26 F</td>
<td>9–14</td>
<td>Class II</td>
<td>Minimal widening and irregularity of the distal radial growth plate (30.8%)</td>
</tr>
<tr>
<td>Caine</td>
<td>39 F</td>
<td>12.6</td>
<td>Class III, II, I</td>
<td>Minimal widening and irregularities of the distal radial phys (10%)</td>
</tr>
<tr>
<td>DeSmet</td>
<td>21 M</td>
<td>12.6</td>
<td>Class IV, III, II, I</td>
<td>Definite changes of subchondral sclerosis, physed widening, marginal new bone formation, and distortion of the distal end of the radius (4.8%)</td>
</tr>
<tr>
<td>Chang</td>
<td>176 (77 F; 99 M)</td>
<td>11–16</td>
<td>Chinese opera students</td>
<td>Enlargement of the distal radial growth plate with irregular borders in 10% of the cases; at baseline, 23 of 50 gymnasts had wrist pain</td>
</tr>
<tr>
<td>DiFiori</td>
<td>44 (27 F; 17 M)</td>
<td>11.6</td>
<td>Non-elite</td>
<td>Unfused group: 10 girls (14.3%) and 32 boys (32.3%) showed stress related changes of the distal radial growth plate; 23 cases showed early partial closure of the distal radial growth plate</td>
</tr>
<tr>
<td>DiFiori</td>
<td>59 (28 F; 31 M)</td>
<td>9.3</td>
<td>Club level</td>
<td>11 gymnasts (25%; M,F) showed radiographic evidence of stress injury to the distal radial phys</td>
</tr>
</tbody>
</table>

The sex of the patients is indicated: M, male; F, female.

Finally, radiographs revealed hindered radial growth and a relatively lengthened ulna. The case, cross-sectional, and cohort data reviewed indicate the existence of stress related injury and, occasionally, stress-related physeal arrest. Along with results from animal studies, these findings suggest repetitive physical loading in excess of tolerance limits as a principle aetiological factor. Unfortunately, other potential aetiologic factors such as nutrition, technique, and equipment have not been well studied.

REASONS FOR CONCERN

This review of the literature raises several important concerns related to growth plate injury among the paediatric athlete population.

- Acute growth plate injuries do occur in sport and may account for as much as 30% of injuries, as reported in one study. However, the proportion of physeal injuries is probably much less, ranging from 1% to 12% of injuries depending on the sport.
- Although 71–75% of sport related growth plate fractures are associated with growth disturbance in two studies, the proportion of those with poor prognosis is probably much less, ranging from 0% to 37%.
- Type I and particularly type 2 Salter-Harris acute growth plate injuries are not as innocuous as originally described and may occasionally be associated with localised growth plate closure and osseous bridging.
- There are accumulating reports of stress-related physeal injuries affecting young athletes in a variety of sports, including baseball, long distance running, basketball, football, soccer, gymnastics, rugby, tennis, and cricket. Although most of these stress-related conditions resolved without growth complication during short term follow up, there are nonetheless several reports of stress-related premature partial or complete physeal closure.
- There are reports of varus changes subsequent to sports-related stress injury to the distal femoral and/or proximal tibial physis (rugby and tennis players).
- There is a paucity of epidemiological data on the distribution and determinants of growth plate injury in organised sports.

The sex of the patients is indicated: M, male; F, female.

Finally, radiographs revealed hindered radial growth and a relatively lengthened ulna. The case, cross-sectional, and cohort data reviewed indicate the existence of stress related injury and, occasionally, stress-related physeal arrest. Along with results from animal studies, these findings suggest repetitive physical loading in excess of tolerance limits as a principle aetiological factor. Unfortunately, other potential aetiologic factors such as nutrition, technique, and equipment have not been well studied.

REASONS FOR CONCERN

This review of the literature raises several important concerns related to growth plate injury among the paediatric athlete population.

- Acute growth plate injuries do occur in sport and may account for as much as 30% of injuries, as reported in one study. However, the proportion of physeal injuries is probably much less, ranging from 1% to 12% of injuries depending on the sport.
- Although 71–75% of sport related growth plate fractures were associated with growth disturbance in two studies, the proportion of those with poor prognosis is probably much less, ranging from 0% to 37%.
- Type I and particularly type 2 Salter-Harris acute growth plate injuries are not as innocuous as originally described and may occasionally be associated with localised growth plate closure and osseous bridging.
- There are accumulating reports of stress-related physeal injuries affecting young athletes in a variety of sports, including baseball, long distance running, basketball, football, soccer, gymnastics, rugby, tennis, and cricket. Although most of these stress-related conditions resolved without growth complication during short term follow up, there are nonetheless several reports of stress-related premature partial or complete physeal closure.
- There are two reports of varus changes subsequent to sports-related stress injury to the distal femoral and/or proximal tibial physis (rugby and tennis players).
- There is a paucity of epidemiological data on the distribution and determinants of growth plate injury in organised sports.

Finally, it is of great concern that many coaches of children and youth sports, although enthusiastic and well meaning volunteers, are otherwise largely uninformed about the growth and development characteristics of children and youth and the appropriate care and prevention of athletic and particularly growth plate injuries.

INJURY COUNTERMEASURES

Although epidemiological data are lacking, it is evident that both acute and chronic physeal injuries occur in children’s and youth sports and that some of these injuries may be associated with growth disturbance. A disturbing finding is the growing number of reports of stress-related physeal injuries affecting young athletes, including those affecting the lower extremities. Coaches and others associated with children’s and youth sports should be educated about the potential for growth plate injury and recommended strategies for prevention. The following preventive measures may be worthy of consideration.

- Training and skill development should be individualised to reduce risk of acute and stress-related physeal injury; in particular, coaches should reduce training loads and delay skill progressions for young athletes experiencing periods of rapid growth. Careful measurement of height at three month intervals will provide coaches with data to estimate growth rate. Height measurements should be taken at the same time of day (preferably in the morning) and should not be taken after a workout.

- Coaches should use a variety of drills or activities during practice to avoid excessively repetitive movements that may result in overuse injury. Emphasis should be on quality of workouts rather than training volume.

- Periodic physical examination should be carried out so that stress-related growth plate and other overuse injuries can be diagnosed at an early stage and modifications made to the training programme to assist in the recovery process; when indicated, radiographs of symptomatic physeal areas should be administered to rule out stress changes.

- Although data on injury prevention are lacking, physical conditioning, including strengthening, range of motion, and proprioceptive exercises, may help to reduce both acute and chronic physeal injury.

- Trained personnel such as certified athletic trainers should supervise injury rehabilitation and return to practice.

- Periodisation of training may also help to reduce stress-related physeal injuries and prevent overtraining. This technique involves the systematic cycling of training loads over set periods of time with well defined rest periods.
Both acute and chronic physeal injuries occur in paediatric sports; most resolve with treatment and rest, but some—particularly acute injuries—may result in growth disturbance.

American football is the sport most often connected with physeal fractures, but most other sports are also represented.

When acute epiphyseal fracture involves a joint, it is recommended that the child not participate in contact sports for at least four to six months to prevent reinjury. Long term follow up is usually necessary to monitor the child’s recuperation and growth. Evaluation includes x-ray examination of matching limbs at three to six month intervals for at least two years.

For collision sports, such factors as maturity, fitness levels, and achievement and skill in the sport should be considered as possible criteria for equalising competition among chronological age peers and preventing unnecessary acute physeal and other injuries. A non-invasive measure for grouping young athletes has been proposed.

Finally, the channels of communication between the coach and the athlete’s doctor must be kept open so that young athletes can be assessed at the earliest opportunity should they develop symptoms. Severe pain around a joint, whether of sudden or gradual onset, may be the symptom of significant growth plate changes, which require examination by a doctor, prompt treatment, and specific recommendations about return to activity. A child should never be allowed or expected to “work through the pain.”

CHALLENGES FOR FUTURE RESEARCH

This scientific review of the literature underscores the need for prospective cohort studies to clarify the distribution and determinants of physeal injuries affecting young athletes. Important to this research is the meticulous documentation of growth plate injuries on injury report forms that include appropriate designations for both physeal and apophyseal growth plate injuries. Important to this research is the meticulous documentation of growth plate injuries affecting young athletes involved in overhead, running-related, and upper extremity weight bearing sports.

During these periods may also result in a reduced risk of injury. Studies that test the effectiveness of pre-participation musculoskeletal screening are also recommended.

It is only through concerted collaborative efforts that optimal results can be achieved. The research team should include the coach, athletic trainer, doctor, and epidemiologist, who interact in a very dynamic manner. In addition, it is important to emphasise that every effort should be made by the research team to establish an open and trusting dialogue with young athletes and their parents. It is only after this is achieved that an adequate database can be established.

Authors’ affiliations

D Caine, Department of Physical Education, Health and Recreation, Western Washington University, Bellingham, WA, USA

J DiFiori, Division of Sports Medicine, Department of Family Medicine, University of California, Los Angeles, CA, USA

N Maffulli, Department of Trauma and Orthopedic Surgery, Keele University School of Medicine, Stoke on Trent ST4 7QB, UK

Competing interests: none declared

REFERENCES

Physeal injuries

www.bjsportmed.com
Gymnast’s wrist

Weber PC, Carter SR. Interscholastic athletics. Method for

Matsuda JJ, Mirwald RL. Gymnast wrist: an epidemiological

Bak K, Boeckstyns M. Epiphysiodesis for bilateral irregular closure of the

Krocks TJ. Modelling deformity in a collegiate gymnast: a case report. J Athl

Caine D, Knutsen K, Howe W, et al. A three-year epidemiological study of

Atkiss KJ, Bundke JH. Physical growth arrest of the distal phalanx of the thumb

Gelbke H. Tierexperimentelle Unterfahrungen zur Frage der orthopädischen
Knochenwachstums unter Zug. Langenbecks Arch Klin Chir Ver Dtsch Z Chir
1950;266:271–84.

Lamb DR, Van Hous WD, Cawood RD, et al. Effects of prepubertal physical
training on growth, voluntary exercise, cholesterol and basal metabolism in
rats. Research Quarterly of the American Association for Health, Physical

Tipton CM, Mathews RD, Maynard JA. Influence of chronic exercise on rat

Klissinen A. Physical training and connective tissues in young mice: physical

Simon MR. The effects of dynamic loading on the growth of epiphyseal

Matsuda JA, Zarnicke RF, Vailas AC, et al. Structural and mechanical

LeYeu BF, Bernhardt DB. Developmental biomechanics. Effects of forces on
the growth, development and maintenance of the human body. Phys Ther 1984;64:1–5.

Auberge T, Zenny JC, Duvallet A, et al. Study of bone maturation and osteo-

Szat Z, Baran Z, Galaz Z. Overloading changes in the motor system

A radiographic survey of 60 young competitive gymnasts and an epidemiologic

Chang CY, Shih C, Penn IW, et al. Wrist injuries in adolescent gymnasts of a

and positive ulnar variance in nonelite gymnasts. Am J Sports Med

Lishen Q, Jianhua O. Epiphyseal injury in gymnasts. Chinese Journal of

National Institute of Arthritis and Musculoskeletal and Skin Diseases.
National Institutes of Health. Questions and answers about Growth Plate

Caine DJ, Lindeker K. Preventing injury to young athletes. Part 2. Preventive
measures. Journal of the Canadian Association for Health Physical

Pedrostra L, Sherman MF, Bonamo JR. Distal humeral epiphyseal separation

Adams JE. Injury to the throwing arm: a study of traumatic changes in the

Hochholzer T, Schaff VV. Epiphyseal fractures of the finger middle joints in

Percy EC, Gamble FO. An epiphyseal stress fracture of the foot and shin

Goddall RW, Hansen CA, Rising DC. Stress fractures through the distal

Liebling MS, Borden WE, Ruzal-Shapiro C, et al. Gymnast’s wrist (pseudorickets growth plate abnormality) in adolescent athletes: findings

Wall EJ. Growth plate overuse syndrome of the ankle in athletes. Med Sci

Nannini M, Butt S, Mansour R. Stress-induced Salter-Harris I growth plate

Loor T, Wall EJ, Vu LP. Physial widening in the knee due to stress injury in

Read MF. Stress fractures of the distal radius in adolescent gymnasts.

Roy S, Caine D, Singer K. Stress changes of the distal radial epiphysis in
young gymnasts. A report of twenty-one cases and a review of the literature.

Fliegel CP. Stress related widening of the radial growth plate in adolescents.

Carter SR, Aldridge MJ. Stress injury of the distal radial growth plate. J Bone

Yong-Hing K, Wedge JN, Bowen CV. Chronic injury to the distal ulnar and

Albanese SA, Palmer AK, Kerr DR, et al. Wrist pain and distal growth plate

Ruggles DL, Peterson HA, Scott SG. Radial growth plate injury in a female

Friszell JB, Brunet G. Stress changes of the distal radial phyis. Can Assoc

Cark DJ, Fumich RM. Stress fracture of the distal radius. Not just a risk for

Nattrass A, Mandelbaum BR. Injuries and special concerns in female gymnasts.
Detecting, treating, and preventing common problems. Phys Sportsmed
1993;21:66–82

Exerc 1997;29(suppl):S151.