The proposed incision is marked on the skin (Fig. 1). Angles of 45–60° are used. The incision straddles the deformity such that the points of the zig-zag are away from the most at-risk skin. The vertical length of the incision is not changed.

Full-thickness skin flaps are then raised exploiting the plane above the lumbar fascia. Each skin flap is then wrapped in a damp swab which is sewn in situ to protect and retract the flap throughout the procedure (Fig. 2). Exposure of the posterior spine is then performed with paraspinal muscle stripping. The wound is closed with either clips or non-absorbable sutures.

DISCUSSION
This technique has been successfully used in our practice to provide soft tissue coverage of metalwork in patients where satisfactory wound closure is difficult, thus reducing wound complications after complex posterior spine surgery. It allows standard exposure of the spine and produces a cosmetically acceptable scar (Fig. 3). This incision is recommended for cases where there is greater potential for wound breakdown, such as oncology patients, and those with gross deformity or a low body mass index.

References

BACKGROUND
The Stimson technique is well established for reducing anterior shoulder dislocations. It employs sedation or local anaesthesia to relax the shoulder muscles, and arm traction in shoulder-forward flexion to relocate the shoulder joint. This is usually applied by laying the patient prone with weights strapped to the arm hanging from the bed. With the addition of internal rotation of the scapula, high rates of reduction are achieved. Traction

Novel traction device for reducing anterior shoulder dislocations using the modified Stimson technique

P CLAMP, R POULTER
1Department of Trauma and Orthopaedics, Royal United Hospital, Bath, UK
2Department of Trauma and Orthopaedics, Royal Devon and Exeter Hospital, Exeter, UK

CORRESPONDENCE TO
P Clamp, Department of Trauma and Orthopaedics, Royal United Hospital, Combe Park, Bath BA1 3NG, UK
M: +44 (0)7887 551744; E: pclamp@doctors.net.uk

BACKGROUND
The Stimson technique is well established for reducing anterior shoulder dislocations. It employs sedation or local anaesthesia to relax the shoulder muscles, and arm traction in shoulder-forward flexion to relocate the shoulder joint. This is usually applied by laying the patient prone with weights strapped to the arm hanging from the bed. With the addition of internal rotation of the scapula, high rates of reduction are achieved. Traction

Novel traction device for reducing anterior shoulder dislocations using the modified Stimson technique

P CLAMP, R POULTER
1Department of Trauma and Orthopaedics, Royal United Hospital, Bath, UK
2Department of Trauma and Orthopaedics, Royal Devon and Exeter Hospital, Exeter, UK

CORRESPONDENCE TO
P Clamp, Department of Trauma and Orthopaedics, Royal United Hospital, Combe Park, Bath BA1 3NG, UK
M: +44 (0)7887 551744; E: pclamp@doctors.net.uk

BACKGROUND
The Stimson technique is well established for reducing anterior shoulder dislocations. It employs sedation or local anaesthesia to relax the shoulder muscles, and arm traction in shoulder-forward flexion to relocate the shoulder joint. This is usually applied by laying the patient prone with weights strapped to the arm hanging from the bed. With the addition of internal rotation of the scapula, high rates of reduction are achieved. Traction...
often relies on taping weights directly to the patient’s arm using adhesive dressings.

TECHNIQUE

We constructed a novel traction device by combining a standard Futuro-type wrist splint with traction weights (Futuro brand; Beiersdorf, Hamburg, Germany). The metallic strut of the wrist splint provides a firm base onto which the weights are attached using strong fabric adhesive tape (Fig. 1). The device allows traction weights to be added or removed whilst in use. Traction does not rely on direct contact between skin and adhesive tape thus minimising the risk of skin damage through shearing force. If scapular manipulation is required to complete the shoulder reduction, a single operator can still perform this.

DISCUSSION

All patients reported the device to be comfortable and none suffered adverse effects as a result of the device. The traction device was easy to apply, adjust and was readily constructed from materials available in the accident and emergency department.

References

BACKGROUND

Performing laparoscopy in patients who have had previous abdominal surgery is often made more hazardous due to the presence of intra-abdominal adhesions. The umbilical port can usually be inserted safely under direct vision using an open technique; however, adhesions commonly form between bowel and the anterior abdominal wall, preventing visualisation of the abdominal cavity distally and safe insertion of a secondary port.

TECHNIQUE

A needle mounted on a syringe to use as a handle is inserted through the anterior abdominal wall under direct vision of the laparoscope. This needle is then advanced through the adhesions and the side of the bevelled tip of the needle used to incise the adhesions (Fig. 1). This can be repeated, inserting the needle in different places, until sufficient adhesiolysis has been performed to allow visualisation of the abdominal cavity distally and safe insertion of a secondary port under direct vision of the laparoscope. Once another port is safely in place, an instrument can be passed to divide any remaining adhesions.

‘Needle adhesiolysis’ prior to port insertion during laparoscopy

IAIN E YARDLEY, JAMES A MORECROFT
Department of Paediatric Surgery, Booth Hall Children’s Hospital, Manchester, UK

CORRESPONDENCE TO

Iain E Yardley, Department of Paediatric Surgery, Booth Hall Children’s Hospital, Charlestown Road, Blackley, Manchester M9 7AA, UK
T: +44 (0)161 918 5000; F: +44 (0)161 918 5609; M: +44 (0)7901 777079; E: iyardley@doctors.org.uk