Effect of chlorpromazine on sympathetic neuroeffector transmission in the rabbit isolated pulmonary artery and aorta

O.A. Nedergaard & J. Abrahamsen

Department of Pharmacology, School of Medicine, Odense University, J.B. Winsløws Vej 19, DK-5000 Odense C, Denmark

1 The effects of chlorpromazine on sympathetic neuroeffector transmission have been studied in the rabbit isolated pulmonary artery and aorta.

2 Chlorpromazine (10⁻⁴–10⁻² M), prazosin (10⁻⁹–10⁻⁷ M) and phentolamine (3 x 10⁻⁸–3 x 10⁻⁵ M) decreased the contractions of pulmonary artery evoked by electrical field stimulation (150 pulses; 3 Hz). The rank order of inhibitory potency (ID₅₀) was prazosin > chlorpromazine > phentolamine.

3 Rauwolscine (3 x 10⁻⁸–4 x 10⁻⁶ M) enhanced the neurogenic response by up to 201%. However, higher concentrations (6 x 10⁻⁶–3 x 10⁻⁵ M) reduced the contractions evoked by transmural stimulation.

4 The inhibitory effect of prazosin (10⁻⁶ M) was reversible, while that of chlorpromazine (10⁻⁴ M) was not.

5 Chlorpromazine (10⁻⁴–10⁻⁴ M), desmethyli mipramine (3 x 10⁻⁹–10⁻⁵ M), cocaine (10⁻⁷–3 x 10⁻⁵ M) and phentolamine (10⁻³–3 x 10⁻⁴ M) reduced the accumulation of [³H]-noradrenaline ([³H]-NA, 10⁻⁸ M) by aorta. The rank order of inhibitory potency (ID₅₀) was: desmethyli mipramine > chlorpromazine > cocaine > phentolamine. Prazosin (10⁻⁷–10⁻⁵ M) and rauwolscine (10⁻⁴–10⁻³ M) did not reduce [³H]-NA accumulation.

6 Chlorpromazine (10⁻⁴–10⁻⁴ M) and prazosin (3 x 10⁻⁹–10⁻⁷ M) antagonized the contractions of aorta evoked by exogenous noradrenaline (10⁻⁸–3 x 10⁻⁴ M) and phenylephrine (10⁻⁹–3 x 10⁻³ M). The pA₂ values for chlorpromazine on the α₁-adrenoceptors were 8.24 (noradrenaline) and 8.27 (phenylephrine). The corresponding values for prazosin were 8.64 and 8.57, respectively.

7 It is concluded that chlorpromazine and prazosin are potent inhibitors of postsynaptic α₁-adrenoceptors. Chlorpromazine and phentolamine, unlike prazosin and rauwolscine, are also inhibitors of Uptake₁.

Introduction

Phenothiazines have significant haemodynamic effects which may be of clinical importance (Elkyam & Frishman, 1980). Thus, chlorpromazine has been used to reduce cardiac afterload in cases of myocardial infarction with congestive heart failure (Elkyam et al., 1977), in the early postoperative management of cardiac surgical patients (Stinson et al., 1975), in the treatment of shock (Coppolino & Wallace, 1960; Dietzman & Lillehei, 1968; Gulotta, 1970), in the management of acute hypertensive crises (Baldini & Lincoln, 1964; Danish Multicenter Study, 1980), and in the treatment of postpartum hypertension (Cassady et al., 1960). Furthermore, chlorpromazine has beneficial effects on kidneys stressed to warm ischaemia (Bilde & Dahlager, 1977) and in skin flap preservation (Jurell et al., 1983; Bibi et al., 1986).

Some of the effects of chlorpromazine on the cardiovascular system are due to actions on the peripheral nervous system. These include blockade of postsynaptic α₁-adrenoceptors (Gokhale et al., 1964; Thoenen et al., 1965; Morgan & Van Maanen, 1980; Asano et al., 1982) and inhibition of neuronal reuptake of released transmitter (Hertting et al., 1961; Axellod et al., 1962; Rosell & Axelrod, 1963; Iversen, 1965; Maxwell et al., 1969). Chlorpromazine also has a direct vasodilator effect on vascular smooth muscle (Asano et al., 1982). In the present work, we have studied in detail the effects of chlorpromazine on sympathetic neuroeffector transmission in isolated blood vessels and compared its effects with those of
well-known \(\alpha \)-adrenoceptor antagonists. Rabbit isolated pulmonary artery and aorta were used.

Methods

Contractions of rabbit isolated pulmonary artery evoked by electrical-field stimulation

The method described by Husted & Nedergaard (1981) was used. The main pulmonary artery was removed rapidly from an unconscious exsanguinated rabbit (1.8–2.6 kg). The artery was divided into two rings which were suitably mounted in isolated tissue baths and maintained at 10 mN resting tension. The preparations were subjected to electrical-field stimulation (225 mA; 3 Hz; 0.5 ms; 15 min intervals) by means of a stimulator (model S48; Grass Medical Instruments, Quincy, MA, U.S.A.) in connection with a constant current unit. The isometric contractions were recorded in a standard manner by means of a force transducer (type SG 4-180; Swema, Stockholm, Sweden) connected to a pen recorder (Omnigraphic, model 3000, Houston Instrument, Houston, TX, U.S.A.). Effects of drugs added cumulatively on stimulation-evoked contractions were studied in the manner previously described (Nedergaard & Schrold, 1977).

Accumulation of \([3H] \)-noradrenaline by rabbit isolated aorta

The method described previously (Nedergaard, 1980) was used. Aortic rings (8–10) were placed in isolated tissue baths filled with 20 ml physiological salt solution (PSS). Monoamine oxidase (MAO) and catechol-
\(O \)-methyltransferase (COMT) were blocked by para-
gyline \((5 \times 10^{-4} \text{M}) \) and U-0521 \((10^{-4} \text{M}) \), respectively. The rings were incubated with \([3H] \)-NA \((10^{-4} \text{M}) \) for 60 min. For experiments designed to examine the ability of a drug to alter the uptake of \([3H] \)-NA, the drug was added to the bath 30 min before \([3H] \)-NA and remained in the bath throughout the experiment. After incubation, the wet weights of the rings were determined. Each ring was treated with Protosol \((0.5 \text{ ml; New England Nuclear Corp.}) \) for 16 h at room temperature in closed scintillation vials. After addition of fluor solution to the vials, radioactivity was measured by liquid scintillation spectrometry. Aliquots \((0.10 \text{ ml}) \) of the bath fluid were also counted. The accumulation of \([3H] \)-NA is expressed as ml of fluid cleared per g of tissue \((\text{ml} \text{g}^{-1}) \).

Determination of \(pA_2 \)

Five rings of aorta (width: 4 mm) were dissected free and each was suitably mounted in an isolated tissue bath filled with 20 ml PSS at a resting tension of 20 mN. The rings were washed twice with PSS during a 1 h equilibration period. The tissues were then primed twice with noradrenaline \((10^{-6} \text{M}) \) until a steady contractile tension response had been attained. The preparations were washed 3–4 times after each exposure to NA. At the last wash, the drug-free PSS was replaced with PSS containing cocaine plus corticosterone plus propranolol. After another equilibrium period \((45 \text{ min}) \) doses of agonists (noradrenaline or phenylephrine) were added cumulatively to the bath in steps in such a way, that 4–6 contractions were elicited in the region of 15 to 85% of the maximum obtained with a high concentration of these agonists. Additions were made whenever a steady contractile response was obtained to the preceding administration. Only one concentration-response curve was determined per preparation. Experiments designed to measure the effect of potential antagonists on the contractile response elicited by agonists were carried out in the following manner: the antagonists (chlorpromazine or prazosin) were added to the bath 30 min before the addition of the lowest concentration of agonist and maintained in the bath for the remainder of the experiment. At least 4 concentrations of each antagonist were used. The antagonists by themselves had no effect on the resting tension. Control experiments with agonists alone were carried out in the same manner. The contractile response elicited by agonists was expressed as a percentage of the maximum tension developed \((\text{mN}) \).

For each group of samples, i.e. agonist alone or agonist plus antagonist, the responses for the individual experiments in the group ranging from 15 to 85% of maximum were pooled.

The \(pA_2 \) values of chlorpromazine and prazosin against the contractions evoked by either NA or phenylephrine were determined by the method of Arunlakshana & Schild (1959).

Potassium

Rings of rabbit aorta were primed once with potassium chloride \((27 \text{ mM}) \). Then potassium chloride \((55 \text{ mM}) \) was added to evoke a maximum contraction. After repeated washes of the preparations with normal PSS, followed by an equilibration period \((1 \text{ h}) \), potassium chloride \((16–55 \text{ mM}) \) was added cumulatively. Each addition of potassium chloride to the bath usually caused an initial phasic contraction, followed by a slightly lower steady tonic response. The latter was used and expressed as a percentage of the maximum response obtained with the first addition of potassium chloride \((55 \text{ mM}) \). The antagonists (chlorpromazine or prazosin) were added as described above.
Drugs

The following drugs were used: chlorpromazine hydrochloride (Dumex Ltd., Copenhagen, Denmark); (-)-cocaaine hydrochloride (Pharm. Eur.); corticosterone (Sigma Chemical Co., Saint Louis, MO, U.S.A.); desmethylimipramine hydrochloride (Dr Karl Thomaie GmbH, F.R.G.); 3',4'-dihydroxy-2-methylpropiophenone (U-0521; The Upjohn Company, Kalamazoo, MI, U.S.A.); (-)-[7-3H]-noradrenaline ([3H]-NA; specific activity 2.7-3.2 Ci mmol\(^{-1}\); New England Nuclear Chemicals, Dreieichenhahn, F.R.G.); (-)-noradrenaline hydrochloride (Sigma Chemical Co.), pargyline hydrochloride (Abbott Laboratories, North Chicago, IL, U.S.A.); phenolamine hydrochloride (Ciba-Geigy AG, Basel, Switzerland); (-)-phenylephrine hydrochloride (Sigma Chemical Co.); prazosin hydrochloride (Pfizer Ltd., Sandwich, England); (-)-propranolol hydrochloride (Imperial Chemical Industries Ltd., Macclesfield, England); and rauwolscine hydrochloride (Carl Roth, Karlsruhe, F.R.G.).

Stock solutions of drugs were prepared in twice distilled water and were stored at 4°C. Concentrations are expressed as mol l\(^{-1}\).

Salt solution

The composition of the PSS was as follows (mM): Na\(^+\) 144.2, K\(^+\) 4.9, Ca\(^{2+}\) 1.3, Mg\(^{2+}\) 1.2, Cl\(^-\) 126.7, HCO\(_3\)^{-} 25.0, SO\(_4\)^{2-} 1.2, H\(_2\)PO\(_4\)^{-} 1.2 and D-(+)glucose 11.1. The solution also contained calcium disodium ethylenediaminetetraacetic acid (Ca\(_2\)Na\(_2\)EDTA; 3\times 10^{-5} \text{M}) and L-(+)-ascorbic acid (10^{-4} \text{M}). The solution was maintained at 37.0°C, equilibrated before and during the experiments with O\(_2\) containing 5\% (v/v) CO\(_2\) in the tissue bath, and had a pH of 7.4.

Statistical analysis

The standard t test (unpaired samples) was used to compare differences between means.

Results

Effect of chlorpromazine and \(\alpha\)-adrenergocceptor antagonists on stimulation evoked contractions

In the presence of cocaine (3\times 10^{-5} \text{M}) plus corticosterone (4\times 10^{-5} \text{M}) plus propranolol (10^{-5} \text{M}), prazosin (10^{-5}-10^{-4} \text{M}), chlorpromazine (10^{-4}-10^{-3} \text{M}), fenolamine (3\times 10^{-5}-3\times 10^{-4} \text{M}) and rauwolscine (6\times 10^{-5}-3\times 10^{-4} \text{M}) reduced the contractions of pulmonary artery evoked by electrical-field stimulation (Figure 1). The rank order of inhibitory potency (ID\(_{50}\)) was prazosin>chlorpromazine > fenolamine > rauwolscine. Rauwolscine at lower concentrations (10^{-8}-3\times 10^{-6} \text{M}) enhanced the neurogenic contractions (Figure 1). Prazosin (10^{-5} \text{M}), but not chlorpromazine (10^{-4} \text{M}), reduced the stimulation-evoked contractions in a reversible manner (Figure 2).

Effect of chlorpromazine and various drugs on [3H]-noradrenaline accumulation

Chlorpromazine (10^{-8}-10^{-4} \text{M}), desmethylimipramine (3\times 10^{-5}-10^{-3} \text{M}), cocaine (10^{-7}-10^{-4} \text{M}), and fenolamine (10^{-6}-3\times 10^{-4} \text{M}) reduced the accumulation of [3H]-NA (10^{-5} \text{M}) by rabbit isolated pulmonary artery (Figure 3). The aorta was treated with pargyline (5\times 10^{-4} \text{M}) and U-0521 (10^{-4} \text{M}) in order to inhibit MAO and COMT, respectively. The order of inhibitory potency (ID\(_{50}\)) was desmethylimipramine > chlorpromazine = cocaine > fenolamine. Prazosin (10^{-7}-10^{-5} \text{M}) and rauwolscine (10^{-8}-10^{-4} \text{M}) did not reduce the [3H]-NA accumulation.
Figure 2 Reversibility of the inhibitory effect of prazosin (a) and chlorpromazine (b) on stimulation-evoked contractions of rabbit isolated pulmonary artery. The contractile tension is expressed as % of the initial 'control' response. Untreated time controls (O) are shown. Chlorpromazine and prazosin were added as indicated by the arrows and maintained in the bath for the remainder of the experiment (■) or until the artery was washed (W) several times with drug-free PSS as indicated by the arrows (▼). Vertical lines represent s.e.mean; n = 5–13.

Antagonism to noradrenaline, phenylephrine and potassium

The ability of chlorpromazine and prazosin to inhibit contractions of rabbit aorta evoked by NA, phenylephrine and potassium was examined. From the concentration-response curves for NA (10^{-9}–3 × 10^{-4} M) and phenylephrine (10^{-9}–3 × 10^{-4} M) the pD_{2} values were determined (Table 1). Chlorpromazine (3 × 10^{-4}–10^{-9} M) and prazosin (3 × 10^{-9}–10^{-5} M) shifted the concentration-response curves for the two agonists to the right in an apparent parallel manner (Figure 4). Plots according to Arunlakshana & Schild (1959) yielded straight lines with slopes not significantly different from −1 (Table 1). The pA_{2} values demonstrated that chlorpromazine was only slightly less potent as an antagonist than prazosin (Table 1). Chlorpromazine (3 × 10^{-7}–10^{-5} M) decreased the maximal contractions evoked by potassium (16–55 mM) (Figure 5). Prazosin (10^{-7}–10^{-5} M) had no effect (Figure 5).

Discussion

The present work demonstrates that chlorpromazine, prazosin and phentolamine inhibited the contractions of pulmonary artery evoked by electrical field stimulation. This confirms the effect for prazosin (Davey, 1980) and phentolamine (Borowski et al., 1977; Davey, 1980).
The chlorpromazine-induced inhibition of the neurogenic contractions is probably due mainly to a blockade of postsynaptic α₂-adrenoceptors. Chlorpromazine is a potent α₂-adrenoceptor antagonist (see below) and the excitatory adrenoceptors in smooth muscle of the pulmonary artery are α₁-adrenoceptors (Docherty & Starke, 1981). At chlorpromazine concentrations of 3 × 10⁻⁷ M and higher, a direct action on smooth muscle also may have contributed to the block, since chlorpromazine at these concentrations antagonized the potassium-evoked contractions of rabbit isolated aorta (Figure 5).

Rauwolscine is a stereoisomer of yohimbine which is a local anaesthetic with about the same potency as cocaine (Bowman & Rand, 1980). It is unlikely that the rauwolscine-induced inhibition of the stimulation-evoked contractions (Figure 1) was due to a presynaptic local anaesthetic action whereby the transmitter release would be decreased. This view is supported by the observation that rauwolscine in a concentration which caused complete blockade of the neurogenic contractions, enhanced the ³H-overflow from the pulmonary artery preloaded with [³H]-NA (unpublished data).

Rauwolscine is considered to be an α-adrenoceptor antagonist on postsynaptic receptors (Nickerson, 1949; Kohli et al., 1957). Weitzell et al. (1979) assumed that rauwolscine reduced the stimulation-evoked contractions of rabbit pulmonary artery by blockade of postsynaptic α₂-adrenoceptors. Evidence has been obtained to suggest that some blood vessels contain two subtypes of postsynaptic α₂-adrenoceptors, namely α₁ and α₂ (Docherty et al., 1979; Timmermans et al., 1979; Starke 1981; McGrath, 1982; Langer & Shepperdson, 1982; De Jonge et al., 1986). It has been established that the postjunctional α₁-adrenoceptor of rabbit pulmonary artery is purely of the α₁-subtype (Docherty & Starke, 1981). Although rauwolscine is considered to be a rather selective α₂-adrenoceptor antagonist (Starke, 1981; McGrath, 1982), it is most likely that the inhibition of the stimulation-evoked contractions of the pulmonary artery seen with high concentrations of rauwolscine (Figure 1) is due to inhibition of postsynaptic α₂-adrenoceptors. This is supported by the fact that rauwolscine has a post-junctional α₂-adrenoceptor pA₂ value of approximately 6 in rabbit pulmonary artery (Weitzell et al., 1979) and other tissues (McGrath, 1984).

Rauwolscine in low concentrations enhanced the contractions of the pulmonary artery evoked by sympathetic nerve stimulation, which confirms the finding obtained with the same tissue (Weitzell et al., 1979). The enhancement is no doubt due to an inhibition of presynaptic α₁-adrenoceptors causing a facilitation of stimulation-evoked release of transmitter which was quite marked, probably as a result of the fact that neuronal and extraneuronal uptake of trans-
mitter had been inhibited by cocaine and corticosterone, respectively. This is supported by the observation that rauwolscine in the same concentration range enhanced the stimulation-evoked release of [3H]-NA release in the rabbit pulmonary artery (Weitzell et al., 1979; Nedergaard, 1986).

Chlorpromazine reduced the accumulation of 3H by aorta preloaded with [3H]-NA. This is consistent with previous reports that chlorpromazine reduces the uptake of [3H]-NA in vivo: cat heart, spleen and adrenal glands (Hertting et al., 1961; Axelrod et al., 1962), and rat heart (Rosell & Axelrod, 1963) as well in vitro: rat heart (Iversen, 1965), rabbit aorta (Maxwell et al., 1969), rat brain synaptosomes (Richelson & Pfennning, 1984), and squid brain synaptosomes (Pollard et al., 1975).

The chlorpromazine-induced reduction in accumulation of [3H]-NA is probably primarily due to an inhibition of the Uptake, transport mechanism. This is supported by the findings that chlorpromazine reduced the formation of [3H]-DOPEG in the stimulation-evoked 3H-overflow from rabbit aorta preloaded with [3H]-NA (Nedergaard & Abrahamsen, 1987). Evidence has accumulated to support the view (Langer, 1974) that [3H]-DOPEG in stimulation-evoked 3H-overflow is formed intraneuronally after re-uptake of released [3H]-NA. Thus, the well-known Uptake, inhibitor, cocaine, decreased [3H]-DOPEG overflow (Langer & Enero, 1974; Borowski et al., 1977; Endo et al., 1977; Schrold & Nedergaard, 1979).

Chlorpromazine inhibited the uptake of catecholamines in isolated storage granules from bovine adrenal medulla (Carlsson et al., 1963). It is possible that inhibition of the granule membrane pump to a small degree also may have contributed to the reduction in accumulation of [3H]-NA seen in the present study.

Chlorpromazine was equipotent with cocaine in

Figure 4 Inhibitory effect of chlorpromazine and prazosin on contractions of rabbit aorta evoked by noradrenaline and phenylephrine. The contractile tension is expressed as a percentage of the maximal tension developed by using a high concentration of the agonist. The PSS contained cocaine (3 × 10⁻⁵ M) + corticosterone (4 × 10⁻⁵ M) + propranolol (10⁻⁷ M). Data from these curves were used in the pA₃ determinations (Table 1). Only representative curves are shown. Responses to noradrenaline or phenylephrine alone (control) (O). (a) Effect of chlorpromazine: 10⁻⁷ M (●), 10⁻⁴ M (□). (b) Effect of prazosin: 10⁻⁴ M (●), 10⁻³ M (□). (c) Effect of chlorpromazine: 3 × 10⁻⁴ M (●), 3 × 10⁻³ M (□), 10⁻⁷ M (■). (d) Effect of prazosin: 10⁻⁴ M (●), 10⁻³ M (□). Vertical lines represent s.e.mean; n = 6–9.
reducing the accumulation of [\(^{3}\)H]-NA by aorta. The inhibitory effect of cocaine is considered to be due to a selective action on the Uptake, transport mechanism in the plasmalemma. Only at high concentrations of cocaine may the local anaesthetic property of this amine possibly contribute to the inhibition. This is most likely also the case with chlorpromazine although it is a much more potent local anaesthetic than cocaine (Seeman, 1972). Thus, the nerve-blocking concentration in frog sciatic nerve is 10\(^{-5}\)M for chlorpromazine (Seeman, 1972) and 2.6 \times 10^{-4} M for cocaine (Skou, 1954). However, at a concentration (10\(^{-5}\)M) where chlorpromazine caused a 75% reduction in [\(^{3}\)H]-NA accumulation (present work), it enhanced the stimulation-evoked \(^{3}\)H-overflow from rabbit pulmonary artery preloaded with [\(^{3}\)H]-NA (unpublished data).

Phentolamine is an inhibitor of Uptake, (Starke et al., 1971), but not of Uptake, (Cole & O'Donnell, 1982) and in rather high concentrations this drug reduces the accumulation of [\(^{3}\)H]-NA by rat brain slices (Schlicker et al., 1983). On the other hand, phentolamine did not change amine uptake by the nictitating membrane of the cat (Langer & Trendelenburg, 1969). The inhibition of \(^{3}\)H accumulation by aorta preloaded with [\(^{3}\)H]-NA (Figure 3) is most likely due to a blockade of the Uptake, transport mechanism.

Neither prazosin nor rauwolscine reduced the accumulation of [\(^{3}\)H]-NA by aorta (Figure 3). This indicates that these \(\alpha\)-adrenoceptor antagonists do not interfere with the Uptake, mechanism.

Chlorpromazine and prazosin antagonized the contractions of aorta evoked by noradrenaline and phenylephrine in a competitive manner. Similar results were obtained with chlorpromazine in dog femoral artery (Morgan & Van Maanen, 1980) and rabbit aorta (Gokhle et al., 1964; Asano et al., 1982), and with prazosin in dog mesenteric artery, femoral artery and vein (Davey, 1980), rat blood vessels (Cohen et al., 1979), rat mesenteric artery (McPherson et al., 1984), rabbit pulmonary artery (Cambridge et al., 1980), rabbit ear artery and saphenous vein (Purdy et al., 1980) and human arteries (Jauernig et al., 1978), human omental arteries and veins (Steen et al., 1984; Skärby & Andersson, 1984) and human temporal artery (Skärby & Andersson, 1984). The antagonism indicates that chlorpromazine is a highly selective inhibitor of postsynaptic \(\alpha\)-adrenoceptors. This is supported by the following: (1) Rabbit aorta contains only \(\alpha\)-adrenoceptors (Docherty et al., 1981); (2) phenylephrine is a selective \(\alpha\)-adrenoceptor agonist (Drew & Whiting, 1979); and (3) the \(pA_2\) values obtained with chlorpromazine were very similar to those seen with the highly selective \(\alpha\)-adrenoceptor antagonist prazosin (Doxey et al., 1977) (cf. Table 3).

The \(pA_2\) values for chlorpromazine obtained in the
Table 2 pA$_2$ values for chlorpromazine against noradrenaline (NA), adrenaline (Ad) and phenylephrine (PE) in isolated tissues

<table>
<thead>
<tr>
<th>Species</th>
<th>Tissue</th>
<th>Agonist</th>
<th>pA$_2$</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PE</td>
<td>8.83</td>
<td></td>
</tr>
<tr>
<td>Rabbit</td>
<td>Fundus</td>
<td>PE</td>
<td>8.96</td>
<td>Ruffolo & Patil, 1978</td>
</tr>
<tr>
<td>Rabbit</td>
<td>Aorta</td>
<td>NA</td>
<td>14.12</td>
<td>Gokhale et al., 1964</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ad</td>
<td>14.0</td>
<td></td>
</tr>
<tr>
<td>Rabbit</td>
<td>Aorta</td>
<td>NA</td>
<td>8.24</td>
<td>Present work</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PE</td>
<td>8.27</td>
<td></td>
</tr>
</tbody>
</table>

Table 3 pA$_2$ values for prazosin against noradrenaline (NA) and phenylephrine (PE) in isolated blood vessels

<table>
<thead>
<tr>
<th>Species</th>
<th>Tissue</th>
<th>Agonist</th>
<th>pA$_2$</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat</td>
<td>Aorta</td>
<td>NA</td>
<td>10.99</td>
<td>Decker et al., 1984</td>
</tr>
<tr>
<td></td>
<td>Aorta</td>
<td>PE</td>
<td>10.20</td>
<td>Ibid., 1984</td>
</tr>
<tr>
<td></td>
<td>Aorta</td>
<td>PE</td>
<td>9.60</td>
<td>Digges & Summers, 1983</td>
</tr>
<tr>
<td></td>
<td>Portal vein</td>
<td>PE</td>
<td>8.17</td>
<td>Ibid., 1983</td>
</tr>
<tr>
<td></td>
<td>Mesenteric artery</td>
<td>PE</td>
<td>9.88</td>
<td>Agrawal et al., 1984</td>
</tr>
<tr>
<td></td>
<td>Mesenteric artery</td>
<td>NA</td>
<td>8.89</td>
<td>Cohen et al., 1980</td>
</tr>
<tr>
<td></td>
<td>Mesenteric artery</td>
<td>NA</td>
<td>8.52</td>
<td>McPherson et al., 1984</td>
</tr>
<tr>
<td>Guinea-pig</td>
<td>Aorta</td>
<td>PE</td>
<td>9.0</td>
<td>Ennis & Cox, 1980</td>
</tr>
<tr>
<td></td>
<td>Aorta</td>
<td>NA</td>
<td>9.09</td>
<td>Grundström et al., 1981</td>
</tr>
<tr>
<td>Rabbit</td>
<td>Aorta</td>
<td>PE</td>
<td>8.64</td>
<td>Awad et al., 1983</td>
</tr>
<tr>
<td></td>
<td>Aorta</td>
<td>NA</td>
<td>8.59</td>
<td>Cavero et al., 1978</td>
</tr>
<tr>
<td></td>
<td>Aorta</td>
<td>PE</td>
<td>8.4</td>
<td>Docherty & Starke, 1981</td>
</tr>
<tr>
<td></td>
<td>Aorta</td>
<td>PE</td>
<td>8.4</td>
<td>Docherty et al., 1982</td>
</tr>
<tr>
<td></td>
<td>Aorta</td>
<td>NA</td>
<td>8.64</td>
<td>Present work</td>
</tr>
<tr>
<td></td>
<td>Portal vein</td>
<td>PE</td>
<td>8.57</td>
<td>Docherty & Starke, 1981</td>
</tr>
<tr>
<td></td>
<td>Pulmonary artery</td>
<td>NA</td>
<td>8.38</td>
<td>Cambridge et al., 1980</td>
</tr>
<tr>
<td></td>
<td>Pulmonary artery</td>
<td>PE</td>
<td>8.6</td>
<td>Docherty & Starke, 1981</td>
</tr>
<tr>
<td></td>
<td>Renal artery</td>
<td>NE</td>
<td>7.22</td>
<td>Dalrymple et al., 1981</td>
</tr>
<tr>
<td></td>
<td>Renal artery</td>
<td>PE</td>
<td>7.6</td>
<td>Ibid., 1981</td>
</tr>
<tr>
<td>Cat</td>
<td>Lingual artery</td>
<td>NA</td>
<td>8.76</td>
<td>Skärby et al., 1983</td>
</tr>
<tr>
<td></td>
<td>Mesenteric artery</td>
<td>NA</td>
<td>8.70</td>
<td>Ibid., 1983</td>
</tr>
<tr>
<td>Dog</td>
<td>Coronary artery</td>
<td>PE</td>
<td>8.6</td>
<td>Rimele et al., 1983</td>
</tr>
<tr>
<td></td>
<td>Femoral artery</td>
<td>NA</td>
<td>8.48</td>
<td>Davey, 1980</td>
</tr>
<tr>
<td></td>
<td>Femoral artery</td>
<td>NA</td>
<td>7.9</td>
<td>De Mey & Vanhoutte, 1981</td>
</tr>
<tr>
<td></td>
<td>Femoral vein</td>
<td>NA</td>
<td>8.50</td>
<td>Davey, 1980</td>
</tr>
<tr>
<td></td>
<td>Mesenteric artery</td>
<td>NA</td>
<td>8.60</td>
<td>Ibid., 1980</td>
</tr>
<tr>
<td></td>
<td>Mesenteric artery</td>
<td>NA</td>
<td>8.4</td>
<td>Muramatsu et al., 1983</td>
</tr>
<tr>
<td></td>
<td>Mesenteric artery</td>
<td>NA</td>
<td>8.65</td>
<td>Toda, 1983</td>
</tr>
<tr>
<td></td>
<td>Saphenous artery</td>
<td>NA</td>
<td>8.3</td>
<td>Müller-Schweinitzer, 1983</td>
</tr>
<tr>
<td></td>
<td>Saphenous vein</td>
<td>NA</td>
<td>7.94</td>
<td>Ibid., 1983</td>
</tr>
<tr>
<td></td>
<td>Saphenous vein</td>
<td>NA</td>
<td>8.48</td>
<td>Sullivan & Drew, 1980</td>
</tr>
<tr>
<td></td>
<td>Saphenous vein</td>
<td>PE</td>
<td>8.15</td>
<td>Ibid., 1980</td>
</tr>
<tr>
<td></td>
<td>Saphenous vein</td>
<td>NA</td>
<td>8.00</td>
<td>Shoji et al., 1983</td>
</tr>
<tr>
<td></td>
<td>Portal vein</td>
<td>NA</td>
<td>8.54</td>
<td>Shoji et al., 1983</td>
</tr>
<tr>
<td></td>
<td>Splenic artery</td>
<td>NA</td>
<td>7.9</td>
<td>De Mey & Vanhoutte, 1981</td>
</tr>
<tr>
<td>Monkey</td>
<td>Mesenteric artery</td>
<td>NA</td>
<td>9.08</td>
<td>Toda, 1983</td>
</tr>
<tr>
<td></td>
<td>Femoral artery</td>
<td>NA</td>
<td>7.96</td>
<td>Ghura & Markwardt, 1983</td>
</tr>
<tr>
<td></td>
<td>Temporal artery</td>
<td>NA</td>
<td>9.21</td>
<td>Skärby & Andersson, 1984</td>
</tr>
<tr>
<td></td>
<td>Omental artery</td>
<td>NA</td>
<td>9.48</td>
<td>Steen et al., 1984</td>
</tr>
<tr>
<td></td>
<td>Omental vein</td>
<td>NA</td>
<td>9.72</td>
<td>Ibid., 1984</td>
</tr>
<tr>
<td></td>
<td>Epigastric artery</td>
<td>NA</td>
<td>9.17</td>
<td>Sjöberg et al., 1987</td>
</tr>
</tbody>
</table>
present work are slightly less than those obtained with the dog femoral artery (Morgan & Van Maanen, 1980) and rabbit fundus (Ruffolo & Patil, 1978) and considerably lower than those obtained by Gokhale et al. (1964) using rabbit aorta (Table 2). In contrast to our work, none of the other authors used inhibitors to decrease removal of agonists by neuronal- and extraneuronal uptake. This may in part explain the slight difference between our results and those obtained with dog femoral artery and rabbit fundus. The extremely high pA2 value reported for rabbit aorta by Gokhale et al. (1964) is very surprising and no ready explanation is at hand for this considerable difference.

Chlorpromazine is reportedly a selective calmodulin antagonist (Levin & Weiss, 1979). At chlorpromazine concentrations of 3 × 10⁻⁷ M and 10⁻⁶ M, the purpuridated inhibition of calmodulin may conceivably have played a minor role in the chlorpromazine-induced shift of the NA and phenylephrine concentration-response curves to the right. This view gains support from the finding that chlorpromazine (3 × 10⁻⁷ M and higher) decreased the potassium-evoked contractions of rabbit aorta (Figure 5). On the other hand, Asano et al. (1982) concluded that the inhibitory effect of 10⁻⁶ M chlorpromazine on NA-induced contractions of rabbit aorta was due to a specific action against a-adrenoceptors. At a higher concentration, 10⁻⁴ M, the observed inhibitory effect of chlorpromazine may in their view reflect the interaction with intracellular calmodulin. The highest concentration of chlorpromazine used in the present antagonism study was 10⁻⁴ M (Table 1).

The present pA2 values for prazosin are in good accord with those determined in rabbit aorta and in several blood vessels in the rabbit, cat, dog and man (Table 3). However, both higher and lower values have been determined in several blood vessels (Table 3). It has recently been suggested on the basis of affinity studies that there appear to be two subtypes of a-adrenoceptor in vascular smooth muscle of blood vessels (Flavahan & Vanhoutte, 1986; 1987). On the other hand, Docherty (1987) states that the evidence in favour of a subclassification is equivocal and that the proposal by Flavahan & Vanhoutte (1986) is premature. This controversy needs to be resolved before a clear-cut interpretation can be made with regard to the differences between the present pA2 values for rabbit aorta and the high values reported for some blood vessels (cf. Table 3). In order to make a proper comparison of pA2 values for different tissues, it seems important that the experiments are carefully controlled and carried out under the optimal conditions as described by Furchgott (1972) for this type of receptor analysis.

Our results are in agreement with the view that prazosin is a highly selective a adrenoceptor antagonist (Stokes, 1984). According to Constantine et al. (1973), prazosin has a direct relaxant action on smooth muscle. The failure of prazosin to alter the potassium-evoked contractions (Figure 5) indicates that this is not the case for rabbit aorta. A similar conclusion was reached for the rabbit ear artery (Purdy et al., 1980).

This work was supported by P. Carl Petersens Foundation and the Foundation for the Advancement of Medical Science. We are grateful for the excellent technical assistance of Mrs Susanne Nielsen and Mr Gert Rasmussen. We thank the following for their generous supply of drugs: Abbott Laboratories (pargyline), Ciba-Geigy (phenotamine), Dumex (chlorpromazine), ICI (propranolol), Pfizer (prazosin) and The Upjohn Co. (U-0521).

References

CAMBRIDGE, D., DAVEY, M.J. & GREENERGASS, P.M. (1980). The pharmacology of antihypertensive drugs with special

DOCHERTY, J.R. & STARKE, K. (1981). Postsynaptic α-

SHOJI, T., TSURU, H. & SHIGEL, T. (1983). A regional difference in the distribution of postsynaptic alpha-

(Received February 23, 1987. Revised July 1, 1987. Accepted August 26, 1987.)