C reactive protein levels are increased in non-allergic but not allergic asthma: a multicentre epidemiological study

I S Ólafsdottir, T Gislason, B Thjodleifsson, I Olafsson, D Gislason, R Jögi, C Janson

Background: High sensitivity C reactive protein (HsCRP) is an inflammatory marker known to be related to smoking, obesity, and cardiovascular disease. A study was undertaken to determine whether HsCRP is related to respiratory symptoms, asthma, atopy, and bronchial hyperresponsiveness in population samples from three countries.

Methods: HsCRP was measured in 1289 subjects from three centres in ECRHS II: Reykjavik, Uppsala and Tartu. The HsCRP values ranged from <0.01 mg/l to 70.0 mg/l and were divided into four equal groups (<0.45, 0.46–0.96, 0.97–2.21, and >2.21 mg/l).

Results: HsCRP increased with increasing body mass index (r=0.41; p<0.0001) and was higher in smokers than in never smokers (p=0.02). A significant relationship was found between increased HsCRP levels and respiratory symptoms such as wheeze, attacks of breathlessness after effort, and nocturnal cough (p<0.0001). The crude odds ratio (95% CI) for the probability of non-allergic asthma was 3.57 (1.83 to 6.96) for subjects in the 4th quartile compared with the 1st quartile of HsCRP. This association remained significant after adjusting for study centre, age, sex, body weight, and smoking history (OR 2.19 (95% CI 1.04 to 4.63)). No significant relationship was observed between HsCRP and allergic asthma or bronchial responsiveness.

Conclusions: Raised levels of HsCRP are significantly associated with respiratory symptoms and non-allergic asthma but not with allergic asthma.

diagnosed asthma and having had asthma related symptoms or attacks of asthma in the preceding 12 months.16

Allergy testing
Total and specific serum IgE was determined using the Pharmacia CAP System (Pharmacia Diagnostics, Uppsala, Sweden). In all centres specific IgE was measured against Dermatophagoides pteronyssinus, Timothy grass, cat, and Cladosporium herbarum. Detection of specific IgE (≥0.35 kU/l) was used as the definition of sensitisation. Atopy was defined as being sensitised to any of the above allergens.

In this analysis allergic asthma was defined as having asthma in combination with atopy, while non-allergic asthma was defined as having asthma but not having atopy.

Body mass index
BMI was calculated as weight in kilograms divided by the square of height in metres.

Bronchial responsiveness
Methacholine challenge was carried out using a dosimeter (Mefar, Brescia, Italy) in all subjects with none of the exclusion criteria defined in the international ECRHS protocol (www.ECRHS.org) and described in detail in a recent publication.12 The level of bronchial responsiveness was expressed using a dose-response slope.17

Smoking
Information on smoking history was collected by administering a questionnaire on each occasion. For those who answered “yes” to the lead question (“Have you ever smoked for as long as a year?”), additional questions were asked on age at starting, amount smoked currently, whether they had stopped or cut down, and amount smoked previously. Based on this information, the subjects were classified into “never smokers”, “ex-smokers” (before ECRHS I), “quitters” (between ECRHS I and II), “starters” (between ECRHS I and II), and “smokers”.

HsCRP measurements
All laboratory measurements were carried out at the Department of Clinical Biochemistry, Landspitali University Hospital, Iceland. Serum samples were stored frozen at −20°C. HsCRP concentrations were measured on a Hitachi 911 analyser using a commercially available latex enhanced immunoturbidimetric assay from Roche. The lower detection limit of the assay is 0.1 mg/l. The between-day coefficient of variation was 1.1% at a concentration of 3.73 mg/l and 1.9% at a concentration of 0.68 mg/l.

Statistical analyses
All statistics were calculated with STATA software, version intercooled STATA 8.0 for Windows. Log-transformed values of HsCRP were used when comparing means between groups and in regression models. One way analysis of variation was used to compare HsCRP levels between groups. Log-transformed values of HsCRP were used when comparing means between groups

All statistics were calculated using STATA software, version 8.0 for Windows. Log-transformed values of HsCRP were used when comparing means between groups and in regression models. One way analysis of variation was used to compare HsCRP levels between groups. Log-transformed values of HsCRP were used when comparing means between groups

RESULTS
The general characteristics of non-asthmatic (n = 1100) and asthmatic participants (n = 189) are summarised in table 1. The non-allergic asthmatic subjects were more often women and they also reported smoking more often than the asthmatic participants.

The HsCRP values ranged from <0.1 mg/l to 70.0 mg/l. The distribution was skewed but normally distributed after log transformation. There were no significant centre or sex differences in HsCRP levels, but there was a weak but statistically significant positive correlation between age and HsCRP (r = 0.10; p = 0.0003). HsCRP increased with increasing BMI (p = 0.0001, fig 1) and was higher in current smokers than in never smokers (geometric mean 1.17 (95% CI 1.02 to 1.33) v 0.92 (95% CI 0.83 to 1.01), p < 0.02).

HsCRP and respiratory symptoms
The prevalence of most respiratory symptoms increased with increasing HsCRP (table 2) and there was a significant difference between the quartile with the lowest levels of HsCRP (<0.45) and the highest quartile (>2.21) for most of the symptoms.

HsCRP, atopy, and bronchial responsiveness
A weak positive correlation was found between HsCRP and total IgE (r = 0.07, p = 0.01). There was no significant relation between HsCRP and atopy (adjusted OR 0.95 (95%
CI 0.62 to 1.44) or between HsCRP and bronchial responsiveness (r = 0.02, p = 0.51).

HsCRP and asthma
Asthmatic subjects had higher HsCRP values than non-asthmatic participants (geometric mean 1.35 (95% CI 1.14 to 1.61) v 0.96 (95% CI 0.90–1.03) mg/l, p = 0.0002). Subjects with non-allergic asthma had significantly higher levels of HsCRP than non-asthmatic subjects, whereas subjects with allergic asthma had levels similar to non-asthmatic subjects (fig 2).

The association between HsCRP and non-allergic asthma remained significant after adjusting for age, sex, smoking, BMI, and centre (table 3). The relationship between BMI and allergic and non-allergic asthma is shown in table 4. Before adjustment for BMI, increasing BMI was associated with allergic and non-allergic asthma. After adjustment for BMI, and centre (table 3). The relationship between BMI and allergic asthma remained significant while no significant association was found between non-allergic asthma and BMI. No significant interaction was found between BMI and HsCRP in relation to allergic and non-allergic asthma.

Meta-analysis and centre heterogeneity
The association between HsCRP, respiratory symptoms, and asthma was also assessed by meta-analysis. The estimates were similar to those derived when analysing the pooled data. Significant centre heterogeneity was found for the relationship between HsCRP and wheeze without a cold (p = 0.04), attacks of breathlessness following activity (p = 0.02), and breathlessness at rest (p = 0.04), with higher odds ratios in Tartu than at the other two centres. No heterogeneity was found for the association between HsCRP and the other respiratory symptoms or asthma.

DISCUSSION
Our study confirms previous results which found that HsCRP is related to age, BMI, and smoking. Our novel finding is, however, that non-allergic asthma is strongly related to higher HsCRP levels whereas allergic asthma is not. There was also a strong association between high HsCRP values and respiratory symptoms such as wheeze, breathlessness after effort, and nocturnal cough. This brings into focus the triad: asthma, high BMI, and high HsCRP.

Several studies have recently reported a strong association between increasing asthma prevalence and increasing BMI, but the causality is unknown. Schachter et al. reported that obesity (BMI > 30) was a risk factor for self-reported asthma and wheeze but this group did not have higher levels of atopy, airway hyperresponsiveness or airway obstruction. Sin et al. also found that obese subjects reported a higher point prevalence of self-reported asthma, although they had a lower prevalence of significant airflow obstruction.

Many factors are associated with both asthma and obesity which complicates the picture. Firstly, in contradiction to that mentioned earlier in the discussion, obesity might be a consequence of asthma as these subjects have reduced exercise capacity and obesity is a known side effect of oral steroid treatments. Secondly, gastro-oesophageal reflux and obstructive sleep apnoea are both possible risk factors for asthma development and are related to obesity. Thirdly, obesity has detrimental effects on respiratory symptoms and lung function, and weight reduction in obese asthmatics has been associated with improvement in symptoms, lung function, and quality of life. In overweight women weight loss has been shown to be independently associated with both improvements in glucose metabolism and decreased CRP. In our study the association between obesity and CRP levels was equally strong for allergic and non-allergic asthma. In the non-allergic asthma group this association became non-significant when adjusting for HsCRP levels but

Table 3	Odds ratio (95% confidence interval) for the relationship between HsCRP (expressed in quartiles and as a continuous variable) and allergic and non-allergic asthma	
HsCRP (mg/l)	Allergic asthma	Non-allergic asthma
<0.45	0.87 (0.47 to 1.61)	0.76 (0.33 to 1.76)
0.45–0.96	0.89 (0.48 to 1.64)	1.57 (0.73 to 3.36)
0.97–2.21	0.64 (0.32 to 1.27)	2.19 (1.04 to 4.63)
>2.21	0.90 (0.73 to 1.12)	1.46 (1.16 to 1.82)

*Adjusted for centre, age, sex, and smoking history.

![Figure 2](https://www.thoraxjnl.com)
remained significant in the group with allergic asthma. This indicates that the pathophysiological background for the association between asthma and obesity differ between allergic and non-allergic asthma.

Previous studies have shown that patients with allergic and non-allergic asthma differ in many aspects, including responsiveness to cold air, response to adenosine monophosphate (AMP),27 levels of nitrogen oxide (NO) in expired air,28 and the level of eosinophilic inflammation in the Airways.29 Our results show an association between increased HsCRP and non-allergic asthma even when adjusted for body weight, but the lack of association between HsCRP and allergic asthma further emphasises the difference between these two subgroups of asthma. The increased HsCRP levels in non-allergic asthma support the theory that, in non-atopic asthma, there is not only a local but also an ongoing systemic inflammatory process.

We conclude that increased levels of HsCRP are significantly associated with respiratory symptoms and non-allergic asthma but not with allergic asthma. Further studies on the possible role of CRP in the pathogenesis of non-allergic asthma could lead to a recognition of new biomarkers, other mechanisms which we have not corrected for, or even new therapeutic possibilities. HsCRP might in the near future be used as a risk factor marker for lung diseases.

ACKNOWLEDGEMENTS
The authors thank A S Ingvarsdottir and V A Gunnlaugsdottir for their expert technical assistance.

Authors’ affiliations
I Olafsdottir, T Gislason, D Gislason, Department of Allergy, Respiratory Medicine and Sleep, Landspitali University Hospital, 108 Reykjavik, Iceland
B Thjodleifsson, Department of Gastroenterology, Landspitali University Hospital, 101 Reykjavik, Iceland
I Olafsson, Department of Clinical Biochemistry, Landspitali University Hospital, 108 Reykjavik, Iceland
R Jögi, Lung Clinic, Tartu University Clinics, Estonia
C Janson, Department of Medical Sciences: Respiratory Medicine and Allergology, Uppsala University, Sweden

The study was supported financially by the Icelandic Research Council, the Swedish Heart and Lung Foundation, the Vardal Foundation for Health Care Science and Allergy Research, the Swedish Association Against Asthma and Allergy, and the Estonian Science Foundation grant no 4350.

REFERENCES
15 Gunnaarsdottir ML, Omenaas E, Gislason T, et al. Obesity and nocturnal gastro-oesophageal reflux are related to onset of asthma and respiratory symptoms. Eur Respir J 2004;24:116–21
22 Sin DD, Jones RL, Man SF. Obesity is a risk factor for dyspnea but not for airflow obstruction. Arch Intern Med 2002;162:1477–81
29 Amin K, Ludviksdottir D, Janson C, et al. Inflammation and structural changes in the airways of patients with atopic and nonatopic asthma. BHR Group. Am J Respir Crit Care Med 2000;162:2295–301

Table 4 Odds ratio (95% confidence interval)* for the relationship between body mass index and HsCRP

<table>
<thead>
<tr>
<th>Body mass index</th>
<th>Without adjustment for HsCRP</th>
<th>With adjustment for HsCRP (quartiles)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Allergic asthma</td>
<td>Non-allergic asthma</td>
</tr>
<tr>
<td><20 kg/m²</td>
<td>0.95 (0.31 to 2.87)</td>
<td>1.14 (0.37 to 3.46)</td>
</tr>
<tr>
<td>20-25 kg/m²</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>>25-30 kg/m²</td>
<td>1.24 (0.76 to 2.04)</td>
<td>1.24 (0.73 to 2.12)</td>
</tr>
<tr>
<td>>30 kg/m²</td>
<td>1.92 (0.99 to 3.71)</td>
<td>1.89 (1.00 to 3.60)</td>
</tr>
<tr>
<td>Per 5 kg/m² increase</td>
<td>1.31 (1.03 to 1.66)</td>
<td>1.34 (1.06 to 1.71)</td>
</tr>
</tbody>
</table>

*Adjusted for centre, age, sex, and smoking history.