Cadence selection affects metabolic responses during cycling and subsequent running time to fatigue

F Vercruysen, R Suriano, D Bishop, C Hausswirth, J Brisswalter

Objectives: To investigate the effect of cadence selection during the final minutes of cycling on metabolic responses, stride pattern, and subsequent running time to fatigue.

Methods: Eight triathletes performed, in a laboratory setting, two incremental tests (running and cycling) to determine peak oxygen uptake (\(\text{VO}_2\text{PEAK}\)) and the lactate threshold (LT), and three cycle-run combinations. During the cycle-run sessions, subjects completed a 30 minute cycling bout (90% of LT) at (a) the freely chosen cadence (FCC, 94 (5) rpm), (b) the FCC during the first 20 minutes and FCC (20%) during the last 10 minutes (FCC (20%), 74 (3) rpm), or (c) the FCC during the first 20 minutes and FCC (20%) during the last 10 minutes (FCC (20%), 109 (5) rpm). After each cycling bout, running time to fatigue (T\(_{\text{max}}\)) was determined at 85% of maximal velocity.

Results: A significant increase in T\(_{\text{max}}\) was found after FCC (20%) (894 (199) seconds) compared with FCC and FCC (20%) (651 (212) and 624 (214) seconds respectively). \(\text{VO}_2\), ventilation, heart rate, and blood lactate concentrations were significantly reduced after 30 minutes of cycling at FCC (20%) compared with FCC (20%). A significant increase in \(\text{VO}_2\) was reported between the 3rd and 10th minute of all T\(_{\text{max}}\) sessions, without any significant differences between sessions. Stride pattern and metabolic variables were not significantly different between T\(_{\text{max}}\) sessions.

Conclusions: The increase in T\(_{\text{max}}\) after FCC (20%) may be associated with the lower metabolic load during the final minutes of cycling compared with the other sessions. However, the lack of significant differences in metabolic responses and stride pattern between the run sessions suggests that other mechanisms, such as changes in muscular activity, probably contribute to the effects of cadence variation on T\(_{\text{max}}\).

During triathlon racing (swim/cycle/run), the most critical and strategic aspect affecting overall performance is the change from cycling to running. These studies have attempted to identify aspects of cycling that may improve running performance in triathletes. Drafting has been shown to be a beneficial cycling strategy which results in an improved subsequent running performance in elite triathletes. More recently, the selection of cycling cadence during a cycle-run combination has been identified by researchers as an important variable that may affect overall performance. Cadence selection has been reported to influence metabolic responses, kinematic variables, and performance during a cycle-run session. However, the extent to which the cadence selection affects subsequent maximal running performance during a cycle-run combination remains unclear.

In a laboratory setting, Vercruysen et al. have shown that the adoption of a low cadence (73 rpm), corresponding to the energetically optimal cadence, reduced oxygen uptake (\(\text{VO}_2\)) during a cycle-run session, compared with the selection of higher cadences (80–90 rpm). These authors suggested that the choice of a low cadence (<80 rpm) before the cycle-run transition may be advantageous for the subsequent run. However, during field based investigations, Gottshall and Palmer found an improved 3200 m track running performance after 30 minutes of cycling conducted at a high cadence (>100 rpm) compared with lower cadences (70–90 rpm) for a group of triathletes. It was suggested that the selection of a high cadence improved running performance through increased stride rate and running speed during the subsequent run. In contrast, Bernard et al. showed no effect of cycling cadence (60–100 rpm) and stride rate on a subsequent 3000 m running performance. These conflicting results indicate the difficulty of predicting the optimal cadence selection for a cycle-run session in trained triathletes.

In most of the above experiments, the triathletes were required to cycle at either an imposed cadence (range 60–110 rpm) or a freely chosen cadence (range 80–90 rpm) which remained constant for the entire 30 minutes of the cycle bout. This lack of cadence variation does not reproduce race situations, during which the cadence may vary considerably especially before the cycle-run transition. Many triathletes attempt to optimise the change from cycling to running by selecting high cadences (>100 rpm) during the final kilometres of cycling. Another strategy, however, may be the selection of a low cadence (~75 rpm) before the cycle-run transition, in order to conserve energy for the subsequent run. To our knowledge, no data are available on cadence changes during the last few minutes before the cycle-run transition and its effects on subsequent running performance.

Therefore the aim of this investigation was to examine, in a laboratory setting, the effect of cadence variations during the final 10 minutes of cycling on metabolic responses, stride pattern, and subsequent running time to fatigue in triathletes.

METHODS

Participants

Eight experienced male triathletes currently in training volunteered to take part in this experiment. All had regularly competed in triathlon racing at either sprint (0.750 km swim/20 km cycle/5 km run) or Olympic distances (1.5 km swim/40 km cycle/10 km run) for at least five years. Mean (SD) training distances a week were 11.1 (2.2) km in swimming, 285.7 (90.0) km in cycling, and 42.1 (12.9) km in running.

Abbreviations: FCC, freely chosen cadence; HR, heart rate; [Lact], lactate concentration; LT, lactate threshold; \(P_{\text{max}}\), maximal power output; \(V_{\text{max}}\), maximal running speed; VE, minute ventilation; \(\text{VO}_2\), oxygen uptake; \(\text{VO}_2\text{PEAK}\), peak oxygen uptake; \(\text{VO}_{2}\text{SC} \), \(\text{VO}_2\) slow component
Mean (SD) age of the subjects was 28.9 (7.4) years. Their mean (SD) height and body mass were 178.3 (5.7) cm and 73.3 (6.0) kg respectively. The test procedures were approved by the Human Rights Committee of the University of Western Australia. Each triathlete carried out, in a laboratory setting (20–22°C, 40–60% relative humidity, 740–760 mm Hg pressure), five test sessions at the same time of day separated by a rest period of at least 48 hours.

Maximal tests

Two incremental tests were used to determine peak oxygen uptake (\(V_{O2\text{ PEAK}}\)), maximal power output (\(P_{\text{max}}\)), maximal running speed (\(V_{\text{max}}\)), and lactate threshold (LT). Subjects performed cycling bouts on a racing bicycle mounted on a stationary turbo-trainer system. Variations in power output were measured using a “professional” SRM crankset system (Schoberer Rad Messtechnik, Fuchsend, Germany) previously validated in a protocol comparison using a motor driven friction brake. Running bouts were performed on a motorised treadmill situated next to the cycle turbo-trainer.

For cycling, the test bout began at an initial workload of 100 W for three minutes, after which the power output was increased by 40 W every three minutes until exhaustion. For the treadmill test, the initial running speed was fixed at 9 kph, with an increase in velocity of 1.5 kph every three minutes. For both cycling and running tests, there was a one minute rest period between each increment for the sampling of capillary blood (35 µl) from a hyperaemic earlobe. Blood samples were collected to determine plasma lactate concentration (\([L^\text{-}a]\)) using a blood gas analyser (ABL 625; Radiometer Medical A/S, Copenhagen, Denmark).

During these tests, \(V_{O2}\), minute ventilation (\(V_{E}\)), and respiratory exchange ratio were continuously recorded every 15 seconds using Ametek gas analysers (SOV S-3A and COV CD3A; Pittsburgh, Pennsylvania, USA). The four highest consecutive \(V_{O2}\) values were summed to determine \(V_{O2\text{ PEAK}}\). \(P_{\text{max}}\) and \(V_{\text{max}}\) were calculated as the average power output and running speed in the last three minutes completed before exhaustion. Heart rate (HR) was monitored every 10 seconds during each experimental session using an electronic HR device with a chest electrode (Polar Vantage NV; Polar Electro Oy, Kempele, Finland). The LT calculated by the modified \(P_{\text{max}}\) method was determined by the point on the polynomial regression curve that yielded the maximal perpendicular distance to the straight line formed by the lactate inflection point (first increase in lactate concentration above the resting level) and the final lactate point.

Cycle-run combinations

All triathletes completed, in random order, three cycle-run sessions each composed of 30 minutes of cycling, on a cycle turbo-trainer, and a subsequent run to fatigue. A fan was used in front of the subject during these experimental sessions. Before each experimental condition, subjects performed 15 minutes of warm up comprising 13 minutes at a low power output (100–130 W) and the last two minutes at the individual workload required during the cycle bout of cycle-run sessions. After two minutes of rest, each triathlete completed a cycle bout at (a) the freely chosen cadence (FCC), (b) the FCC during the first 20 minutes and FCC–20% during the last 10 minutes (FCC–20%), or (c) the FCC during the first 20 minutes and FCC+20% during the last 10 minutes (FCC+20%). The FCC±20% range has previously been used during a 30 minute cycling exercise in triathletes. Cycling bouts were performed at a power output corresponding to 90% of LT (266 (28) W) and represented an intensity close to that reported in previous studies of the relation between cycling cadence and running performance. FCC–20% was chosen to replicate cadence values close to the energetically optimal cadence previously noted in triathletes, and FCC+20% allowed us to reproduce cadence values close to those reported during cycling strategies before running. Cadence and power output were monitored using the SRM power meter during all cycling bouts. No feedback was given to the subjects on their FCC over the three conditions.

After each cycling bout, running time to fatigue (\(T_{\text{max}}\)) was determined on the treadmill at a running speed corresponding to 85% of \(V_{\text{max}}\) (LT) for each athlete (16.7 (0.7) kph). On the basis of previous experiments and the completion of pilots tests, this running intensity was chosen to induce fatigue in less than 20 minutes. All subjects were given verbal encouragement throughout each trial. The \(T_{\text{max}}\) was taken as the time at which the subject’s feet left the treadmill as he placed his hands on the guardrails. The transition time between running and cycling was fixed at 45 seconds to reproduce the racing context.

Measurement of metabolic variables

\(V_{O2}, V_{E},\) and HR were monitored and analysed during the following intervals: 3rd–5th minute of cycling bout (3–5 min), 20th–22nd minute (20–22 min), 28th–30th minute (28–30 min) and every minute during the running sessions. Five blood samples were collected at the following intervals: before the warm up, at 5, 20, and 30 minutes during cycling, and at the end of \(T_{\text{max}}\).

Measurement of kinematic variables

Power output and cycling cadence were continuously recorded during the cycling bouts. For each running session, a 50 Hz digital camera was mounted on a tripod 4 m away from the motorised treadmill. Subsequently, the treadmill
The sessions (Table 1). However, HR peak and VO₂ at LT were No significant differences in VO₂peak were observed between the two maximal conditions were analysed by one way analysis of variance. A paired t test was used to analyse differences in VO₂peak, HRpeak, and VO₂ at LT between the two maximal tests. Statistical significance was set at p<0.05.

RESULTS

Maximal tests

No significant differences in VO₂peak were observed between the sessions (Table 1). However, HRpeak and VO₂ at LT were significantly higher during running than during the maximal cycling bout (+2.9% and +15.8% respectively).

Cycling bouts of cycle-run sessions

No significant variation in FCC was observed during the first 20 minutes of the three cycling bouts (Table 2). In addition, mean power output values were not significantly different between the cycling bouts (264 (30), 263 (28), and 261 (29) W respectively for FCC, FCC+20%, and FCC+20%). These data show that subjects adhered to the experimental design with respect to the required power output-cadence combination.

A significant effect of exercise duration (between 3–5 and 28–30 min intervals) was observed on VO₂, VE, and HR during the FCC and FCC+20% bouts whereas no significant variation in these metabolic variables was identified with exercise duration during the FCC–20% condition (Table 3). Moreover, mean VO₂, VE, and HR were significantly lower at FCC–20% compared with FCC+20% during the 28–30 min interval (respectively, −5.3%, −18.2%, and −6.8%). [La⁻] was significantly higher during the 28–30 min interval at FCC+20% compared with FCC (+31.2%) or FCC–20% (+55.5%).

Running bouts of cycle-run sessions

A significant increase in Tmax was observed only after the FCC–20% modality when compared with both the FCC+20% and FCC conditions (+43.3% and +37.3% respectively; Fig 1). Tmax values were 624 (214), 651 (212) and 894 (199) seconds after the FCC+20%, FCC and FCC–20% modalities respectively. A significant increase in AVO₂—that is, between the 3rd and 10th minute—was found during the Tmax completed after FCC (+61.6%), FCC+20% (+67.6%), and FCC–20% (+65.6%) (Table 4). However, mean VO₂, VE, HR, and [La⁻] were not significantly different between the three Tmax sessions (Table 4).

No significant difference in stride pattern was observed during the Tmax sessions whatever the prior cadence selection (Fig 2). Mean stride rate (Hz) and stride length (m) were 1.49 (0.01) and 3.13 (0.02), 1.48 (0.01) and 3.13 (0.03), 1.49 (0.01) and 3.15 (0.02), during the Tmax sessions subsequent to the FCC, FCC–20% and FCC+20% bouts respectively.

DISCUSSION

The main findings of this investigation show a significant increase in Tmax when the final 10 minutes of cycling is performed at FCC–20% (894 seconds) compared with FCC (651 seconds) and FCC+20% (624 seconds). Several hypotheses are proposed to explain the differences in Tmax reported.

Table 3 Variations in mean oxygen uptake (VO₂), minute ventilation (VE), heart rate (HR), and blood lactate concentration ([La⁻]), during the three cycling bouts, at different time periods: 3–5, 20–22, 28–30 min

<table>
<thead>
<tr>
<th>Cycling bout</th>
<th>VO₂ (ml/kg/min)</th>
<th>VE (l/min)</th>
<th>HR (beats/min)</th>
<th>[La⁻] (mmol/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCC–20%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3–5 min</td>
<td>47.4 (3.5)</td>
<td>74.7 (9.5)</td>
<td>139 (11)</td>
<td>3.3 (1.2)</td>
</tr>
<tr>
<td>20–22 min</td>
<td>47.5 (4.3)</td>
<td>74.8 (1.2)</td>
<td>141 (10)</td>
<td>3.3 (1.4)</td>
</tr>
<tr>
<td>28–30 min</td>
<td>48.6 (3.2)</td>
<td>75.3 (9.9)</td>
<td>142 (11)</td>
<td>2.7 (1.0)†</td>
</tr>
<tr>
<td>FCC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3–5 min</td>
<td>47.3 (4.4)</td>
<td>74.7 (10.7)</td>
<td>140 (11)</td>
<td>2.7 (0.7)</td>
</tr>
<tr>
<td>20–22 min</td>
<td>49.1 (5.2)*</td>
<td>80.2 (12.5)</td>
<td>147 (14)*</td>
<td>3.3 (1.0)</td>
</tr>
<tr>
<td>28–30 min</td>
<td>50.1 (4.8)*‡</td>
<td>82.5 (12.6)</td>
<td>150 (14)*‡</td>
<td>3.2 (0.9)‡</td>
</tr>
<tr>
<td>FCC+20%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3–5 min</td>
<td>46.1 (3.8)</td>
<td>73.6 (9.0)</td>
<td>138 (11)</td>
<td>2.7 (0.6)</td>
</tr>
<tr>
<td>20–22 min</td>
<td>47.8 (3.8)</td>
<td>79.5 (11.1)</td>
<td>144 (12)</td>
<td>2.9 (0.6)</td>
</tr>
<tr>
<td>28–30 min</td>
<td>51.2 (4.5)*‡</td>
<td>89.0 (12.4)*‡</td>
<td>152 (14)*‡</td>
<td>4.2 (0.8)*‡†‡</td>
</tr>
</tbody>
</table>

Values are expressed as mean (SD).
*Significantly different from the 3–5 min interval, p<0.05.
†Significantly different from the 3–5 min interval, p<0.05.
‡Significantly different from FCC–20% at the same period, p<0.05.
§Significantly different from FCC+20% at the same period, p<0.05.

Figure 1 Running time to fatigue after the selection of various cycling cadences. Values are expressed as mean (SD). *Significantly different from the other sessions, p<0.05.
obtained at Tmax – 2 min.

sessions in trained subjects. With respect to metabolic
distance running performance and/or exhaustive treadmill
factors, the improvement in Tmax observed after FCC

The Tmax values of this investigation are comparable to those
Metabolic hypotheses
The Tmax values of this investigation are comparable to those
maximal performances in middle distance running may be
linked to the energy requirement for a given distance and the
maximal rate of metabolic energy output from the integrative
contribution of aerobic and anaerobic systems. During
submaximal and maximal running, the VO2 variation has
been reported to reflect the relative contribution from the
aerobic and anaerobic sources. In the context of a cycle-run
session, Bernard et al5 have reported that triathletes were able
to sustain a higher fraction of VO2MAX during a 3000 m track
run performed after cycling at 60 rpm than during cycling at
80 and 100 rpm. These authors suggested that a greater
contribution of the aerobic component, during running after
the choice of a low cadence, may delay fatigue for longer
running distances. In this investigation, the analysis of VO2
may also provide information on possible changes in aerobic
contribution during high intensity running. Given the range
of Tmax values, the metabolic variables were analysed during
the first 10 minutes of each running session, corresponding
approximately to the mean Tmax values reported after the
FCC and FCC+20% modalities (fig 1). The evaluation of this
time interval indicates no significant differences in VO2
between the Tmax sessions, suggesting that the determination
of Tmax in this study was not affected by changes in metabolic
energy from the aerobic or anaerobic systems.

Table 4 Variations in mean oxygen uptake (VO2), ΔVO2 (10–3 min), minute ventilation (VE), heart rate (HR), and blood lactate concentration ([La−]) during the three running sessions performed after cycling

<table>
<thead>
<tr>
<th>Variable</th>
<th>Run after FCC – 20%</th>
<th>Run after FCC</th>
<th>Run after FCC+20%</th>
</tr>
</thead>
<tbody>
<tr>
<td>VO2 (ml/min/kg)</td>
<td>63.9 (2.7)</td>
<td>62.0 (2.8)</td>
<td>61.8 (1.4)</td>
</tr>
<tr>
<td>VO2 (l/min)</td>
<td>4.72 (0.4)</td>
<td>4.59 (0.4)</td>
<td>4.56 (0.3)</td>
</tr>
<tr>
<td>VO2 (10–3 min)(ml/min)*</td>
<td>291.3 (126.5)</td>
<td>269.9 (123.5)</td>
<td>291.3 (114.5)</td>
</tr>
<tr>
<td>VE (l/min)</td>
<td>122.5 (15.8)</td>
<td>122.0 (13.3)</td>
<td>122.8 (10.8)</td>
</tr>
<tr>
<td>HR (beats/min)</td>
<td>169 (8)</td>
<td>169 (10)</td>
<td>168 (10)</td>
</tr>
<tr>
<td>[La−] (mmol/l)</td>
<td>6.8 (1.7)</td>
<td>7.4 (2.1)</td>
<td>7.2 (2.2)</td>
</tr>
</tbody>
</table>

Values are expressed as mean (SD).
*Significantly different between the 3rd and 10th minute of exercise, p<0.05.

during the various cycle-run combinations for the group of
A number of studies have analysed characteristics of cycle-
run sessions in triathletes, with particular focus on physio-
logical and biomechanical aspects during the subsequent run.1 For instance, during a running session after cycling, a
substantial increase in energy cost, VE, and HR, and differences in muscle blood flow have been observed compared with an isolated run.3,5,6,8 Moreover, variations in running kinematics such as stride rate, segmental angular position, and joint angle have been shown after a cycle bout.3,5 These running alterations, which have been linked to the effects of exercise duration and cycle-run transition, were reported during treadmill sessions conducted at a submax-
imal intensity and not during a high intensity running bout.
In this study we investigated these effects at a high intensity
close to a running speed previously observed during a short
cycle-run combination in triathletes.7

Metabolic hypotheses
The Tmax values of this investigation are comparable to those
previously reported during an exhaustive isolated run performed at an intensity corresponding to 85–90% VO2MAX.11–13 It has previously been reported that metabolic
and muscular factors are potential determinants of middle
distance running performance and/or exhaustive treadmill
sessions in trained subjects.14–18 With respect to metabolic
factors, the improvement in Tmax observed after FCC – 20% may be related to changes in energy contribution. In support
of this hypothesis, it has been reported that the determinants
of maximal performances in middle distance running may be
linked to the energy requirement for a given distance and the
maximal rate of metabolic energy output from the integrative
contribution of aerobic and anaerobic systems.15–18 During
submaximal and maximal running, the VO2 variation has
been reported to reflect the relative contribution from the
aerobic and anaerobic sources.15 In the context of a cycle-run
session, Bernard et al5 have reported that triathletes were able
to sustain a higher fraction of VO2MAX during a 3000 m track
run performed after cycling at 60 rpm than during cycling at
80 and 100 rpm. These authors suggested that a greater
contribution of the aerobic component, during running after
the choice of a low cadence, may delay fatigue for longer
running distances. In this investigation, the analysis of VO2
may also provide information on possible changes in aerobic
contribution during high intensity running. Given the range
of Tmax values, the metabolic variables were analysed during
the first 10 minutes of each running session, corresponding
approximately to the mean Tmax values reported after the
FCC and FCC+20% modalities (fig 1). The evaluation of this
time interval indicates no significant differences in VO2
between the Tmax sessions, suggesting that the determination
of Tmax in this study was not affected by changes in metabolic
energy from the aerobic or anaerobic systems.

However, several investigators have examined the influence
of prior exercise on the VO2 response during subsequent exercise.20–26 Burnley et al24 showed that the magnitude of VO2
kinetics during heavy exercise was affected only by a prior
bout of heavy exercise. On the basis of similar results, it has
been suggested that, during successive bouts of heavy
exercise, muscle perfusion and/or O2 off loading at the
muscle may be improved, resulting in changes in VO2 kinetics
during the second bout of exercise.25–26 In addition, changes in
the VO2 response may be accentuated by the manipulation
of cadence during an isolated cycling bout.27 Gotshall et al27
showed an increase in muscle blood flow and a decrease in
systemic vascular resistance with increasing cadence (from
Muscular and stride pattern hypotheses

Although we conducted no specific analysis of muscular parameters, an attractive hypothesis to explain the differences in T_{max} between conditions is that they are due to differences in the muscular activity or fatigue state during cycle-run sessions. Muscular contractions differ during cycling and running. Cycling is characterised by longer phases of concentric muscular contraction, whereas running involves successive phases of eccentric-concentric muscular action. Muscle activity during different modes of contraction can be assessed from the variation in the electromyographic signal. In integrated electromyography based investigations, it has been shown that muscles such as the gastrocnemius, soleus, and vastus lateralis are substantially activated during running. Any alterations in the contractile capability of these muscles may have affected the ability to complete a longer T_{max} during the cycle-run sessions in this study.

Furthermore, many studies have reported substantial changes in muscular activity during isolated cycling exercises, especially when cadence is increased or decreased. With respect to the cycle-run combination, the manipulation of cadence may accentuate modifications in muscular activity during cycling and influence the level of fatigue during a subsequent run. Marsh and Martin showed a linear increase in electromyographic activity of the gastrocnemius and vastus lateralis muscles when cadences increased from 50 to 110 rpm. Although activity of the gastrocnemius muscle has been shown to increase considerably more than the soleus muscle as cadence is increased, Ericson et al have also reported a significant increase in soleus muscle activity with the selection of high cadences. These results from isolated cycling exercises conducted in a state of non-fatigue suggest that, during the last 10 minutes of the cycling bout of our study, there was greater recruitment of the vastus lateralis, gastrocnemius, and soleus muscles after cycling at higher cadences. This may have resulted in an increase in fatigue of these muscles, which are substantially activated during subsequent running. In contrast, the lower activity of the vastus lateralis, gastrocnemius, and soleus muscles after the FCC–20% condition may have reduced the fatigue experienced during cycling and resulted in improved utilisation of these muscles during the subsequent run. This may have contributed to the observed increase in T_{max} for this condition. Nevertheless, Lepers et al suggested that the neuromuscular fatigue observed after 30 minutes of cycling was attributable to both central and peripheral factors but was not influenced by the pedalling rate in the range FCC ±20%. In this earlier study, the selected power outputs (≥300 W) for all cadence conditions were significantly higher than those used in our experiment (260–265 W).

The choice of high power outputs during cycling may result in attenuation of the differentiated effects of extreme pedalling cadences on the development of specific neuromuscular fatigue. Further research is required to analyse the relation between various pedalling strategies and muscular recruitment patterns specific to a short cycle-run session (<1 hour).

The analysis of movement patterns during the cycle-run sessions also indicates that possible changes in muscle activity may be associated with modifications in kinematic variables. Hauws wirth et al reported significant variations in stride-rate-stride length combination during a run session subsequent to a cycling bout compared with an isolated run. These modifications were attributed to local muscle fatigue from the preceding cycle. In the present study, the absence of significant differences in stride pattern during running (fig 2), regardless of the prior cadence selection, indicates that there is no relation between stride pattern and running time to fatigue. These results are consistent with previous results from a laboratory setting where the running speed was fixed on a treadmill after various cadence selections. In contrast, in field based investigations, in which the running speed and stride pattern were freely selected by the athletes, Gottshall and Palmer found that cycling at 109 rpm, compared with 71 and 90 rpm, during a 30 minute cycle session resulted in an increased stride rate and running speed during a 3200 m track session. However, these results are in contrast with those of Bernard et al indicating an effect of the prior cadence on stride pattern only during the first 500 m and not during the overall 3000 m run. The relation between stride pattern, cycling cadence, and running performance is not clear. Further investigation is required to elucidate the mechanisms that affect running performance during a cycle-run session.

In conclusion, this study shows that the choice of a low cadence during the final minutes of cycling improves subsequent running time to fatigue. The findings suggest
that metabolic responses related to VO$_2$ do not explain the differences in running time to fatigue. However, the effect of cadence selection during the final minutes of cycling on muscular activity requires further investigation. From a practical standpoint, the strategy to adopt a low cadence before running, resulting in a lower metabolic load, may be beneficial during a sprint distance triathlon.

ACKNOWLEDGEMENTS

We gratefully acknowledge all the triathletes who took part in the experiment for their great cooperation and motivation.

Authors’ affiliations

F Vercruyssen, J Brisswalter, Department of Sport Ergonomics and Performance, University of Toulon-Var, BP 132, 83957 La Garde cedex, France

R Suriano, D Bishop, School of Human Movement and Exercise Science, University of Western Australia, Crawley, WA 6009, Australia

C Hausswirth, Laboratory of Physiology and Biomechanics, Nationale Institute of Sport and Physical Education, 11, avenue du Tremblay, 75 012 Paris, France

Competing interests: none declared

REFERENCES

