Domperidone treatment in man inhibits the fall in plasma renin activity induced by intravenous γ-L-glutamyl-L-dopa

D. P. WORTH, J. N. HARVEY, J. BROWN, A. WORRAL & M. R. LEE
Department of Medicine, Leeds General Infirmary, Leeds LS1 3EX

1 The dopamine pro-drug γ-L-glutamyl-L-dopa (gludopa) was administered intravenously to six normal subjects at a dose of 12.5 µg min⁻¹ kg⁻¹, either with or without the dopamine antagonist domperidone. A control was provided by the intravenous infusion of domperidone alone and saline on a separate occasion.

2 Intravenous gludopa produced a significant natriuresis, whether administered alone or in combination with domperidone.

3 After gludopa infusion, there was a significant fall in plasma renin activity, an effect which was attenuated significantly by concomitant treatment with domperidone.

4 These observations suggest that blockade of renal DA2 dopamine receptors has little or no effect on gludopa-induced natriuresis, but that at least part of the dopaminergic inhibition of renin release is mediated by renal DA2 receptors.

Keywords dopamine domperidone plasma renin activity renal haemodynamics natriuresis L-dopa

Introduction

According to the classification of Goldberg and Kohli, peripheral dopamine (DA) receptors are of either DA1, or DA2 subtype (Goldberg & Kohli, 1983). Renal vasodilatation induced by dopamine is mediated by vascular DA1 receptors, but it is uncertain whether the natriuresis due to this catecholamine results simply from alterations in renal blood flow, or from the stimulation of specific tubular receptors. Dopamine reduces proximal tubular fluid reabsorption (Bello-Reuss et al., 1982), and DA receptors have been demonstrated on rabbit proximal tubule (Felder et al., 1984), suggesting that there are indeed specific tubular receptors for dopamine, although the exact subtype remains uncertain. Dopamine is also known to affect the renin-angiotensin aldosterone system, at the level of both the adrenal gland (Witzgall et al., 1985) and the kidney (Sowers et al., 1982). Dopaminergic inhibition of renin release has been demonstrated recently in animals (Sowers et al., 1981) and in human subjects (Worth et al., 1985), although again, the receptor subtype is not known.

Since dopaminergic drugs are being developed for use in the treatment of disorders such as heart failure and essential hypertension (Goldberg, 1984), it is of interest to know which DA receptors mediate potentially therapeutic dopamine effects. We, therefore, conducted a study to investigate the effect of the peripheral DA2 antagonist, domperidone (Laduron & Leyson, 1979; Glock et al., 1982), on the changes in the renal function of normal human subjects produced by the relatively kidney-specific dopamine pro-drug γ-L-glutamyl-L-dopa (gludopa). This dipeptide, when administered intravenously at 12.5 µg min⁻¹ kg⁻¹ to normal subjects (Worth et al., 1985) resulted in a 250-fold increase in urine free dopamine excretion with only a four-fold rise in plasma DA concentration, and no alteration in pulse or blood pressure. Renal vasodilatation...
tation, natriuresis and a fall in plasma renin activity (PRA) also occurred. In view of its relative renal specificity, gludopa provides a useful tool for investigating dopamine-induced changes in renal function.

Methods

The protocol for the study was approved by the Ethics Committee of Leeds General Infirmary, and all subjects gave informed consent.

Six normal male subjects, aged 26–32 years, were studied on three occasions, separated by at least 1 week, when they received either gludopa alone, domperidone alone, or the two drugs together.

Gludopa was synthesised by UCB Bioproducts Ltd (Rue Berkendael 68, 1060 Brussels, Belgium) and shown to contain 92% peptide, by thin layer and high performance liquid chromatography, the balance being acetic acid carried over from freeze drying. It was dissolved in 0.9% sodium chloride solution (saline), with 0.05% human albumin as carrier, and made up into 5 ml ampoules containing 100 mg gludopa. Domperidone was obtained from Janssen Pharmaceuticals Ltd, as the intravenous preparation containing domperidone 5 mg ml⁻¹.

No strict dietary control was imposed, but during the day preceding each study, subjects avoided alcohol, caffeine-containing drinks (12 h) and cigarettes (6 h). Sodium intake was not controlled or measured, but in order to reduce the range of values for basal sodium excretion, subjects were asked to avoid foods with a high salt content, for 24 h prior to the study. Thirty minutes before the study, intravenous cannulae were placed in both antecubital fossae, for blood sampling and drug administration. Each study consisted of three 2 h periods: during the first (−2–0 h) and last (2–4 h), saline was administered i.v. at a dose of 0.6 ml kg⁻¹. During the middle period (0–2 h), either gludopa 12.5 μg min⁻¹ kg⁻¹ in saline 0.6 ml kg⁻¹, or saline 0.6 ml kg⁻¹ was infused intravenously: immediately before this infusion, a bolus i.v. injection (2 ml) of either domperidone 10 mg or 5% dextrose was given. In addition to the bolus dose, domperidone 30 mg in 6 ml, or 5% dextrose (6 ml), was infused i.v. during the second and third periods (0–4 h), the rate of infusion of domperidone being 7.5 mg h⁻¹. The drugs were administered in such a way that subjects received, in random order, either gludopa with dextrose, gludopa with domperidone, or saline with domperidone. Every hour, 200 ml of water was taken orally to ensure an adequate urine flow. Urine was collected during each 2 h period for measurement of volume and sodium concentration. Blood was taken at the end of each period for estimation of plasma renin activity (PRA) and, in four subjects, plasma aldosterone (PA). An i.v. injection of [¹²⁵I]orthoiodohippurate (OIH) 10 μCi, and ⁵¹Cr labelled ethylene diamine tetraacetic acid (EDTA), 30 μCi, was given 30 min into the middle period, for measurement of effective renal plasma flow (ERPF) and glomerular filtration rate (GFR). Multiple blood samples were taken after the injection, and urine collected 90 min later (at time 2 h) for gamma-counting, with an additional voiding 30 min after the injection to ensure accuracy of collection. Blood pressure and pulse rate were measured in duplicate every 15 min using a Dinamapp monitor (Critikon Ltd).

PRA was estimated by radioimmunoassay (Haber et al., 1969) with intra- and inter-assay coefficients of variation (CV) of 6.1% and 7.3% respectively. Plasma aldosterone was also measured by a radioimmunoassay (Diagnostic Products), with an intra-assay CV between duplicate results, of 6%. Urine sodium concentrations were measured by autoanlyser. The cumulative integral method of Harries et al. (1972) was used for the measurement of ERPF and GFR, with CVs of 9% and 4% respectively.

The Wilcoxon matched pair signed-rank test was used for assessment of the data on ERPF, GFR, PRA, urine flow and urine electrolyte excretion. The means of individual's blood pressure and pulse rate values over hours 2, 3, 4, 5 and 6 were compared by the Friedmann non-parametric two-way analysis of variance.

Results

On administration of gludopa there was an increase in mean urinary sodium excretion (Table 1), from 4.8 ± 0.9 mmol h⁻¹ during the run-in period (−2–0 h) to 7.1 ± 1.0 during the infusion (0–2 h), the increment over baseline being significant when compared to the fall occurring during the control study (P < 0.05). The natriuresis induced by gludopa was not affected by simultaneous treatment with domperidone, since the mean urinary sodium excretion on the combination of drugs also arose, from 6.5 ± 1.3 mmol h⁻¹ (−2–0 h) to 8.6 ± 1.5 (0–2 h), which was significant when compared to the changes occurring on domperidone alone (P < 0.05). There were no significant changes in urine sodium excretion at 2–4 h with either gludopa alone, or in combination with domperidone, when compared to the control data (domperidone).
There was an increase in mean urine flow on all study days (Table 1), and although gludopa, with or without domperidone, appeared to cause a greater diuresis than domperidone alone, there were no significant differences between the treatments. Mean urinary potassium excretion (Table 1) also increased to a similar extent on all forms of treatment.

Gludopa infusion caused mean ERPF to increase by 18% over baseline (Table 2), and gludopa with domperidone resulted in a 7% increase, although neither of these changes was significant. Similarly, mean GFR increased on both gludopa alone and in combination with domperidone, by 17% and 11% over baseline respectively, although as with ERPF, these changes did not reach statistical significance.

Mean PRA fell immediately after gludopa infusion (Figure 1, Table 3) from 2.2 ± 0.3 ng AI h⁻¹ ml⁻¹ (time 0) to 1.5 ± 0.4 (time 2 h), the decrement differing significantly from the rise which occurred on domperidone alone (P < 0.05). When domperidone was given with gludopa there was a small but non-significant fall in mean PRA, from 2.1 ± 0.3 to 2.0 ± 0.4 ng AI h⁻¹ ml⁻¹ which was significantly different from the marked fall in PRA which occurred on gludopa alone (P < 0.05).

Mean plasma aldosterone concentration (four subjects) decreased after all treatments (Table 3), with a greater fall at 2 h following gludopa (−41%) than after domperidone (−15%) or gludopa plus domperidone (−9%).

There were no significant changes in mean blood pressure or pulse rate and no adverse effects with any of the treatments. The absence of systemic effects of gludopa confirms our previous observations (Worth et al., 1985).

Discussion

At this dose domperidone did not abolish the natriuretic action of gludopa, suggesting that the major part of this effect is not mediated through DA₂ receptors. Other doses of domperidone were not studied, but animal experiments suggest that the dose used in the present study (0.46–0.61 mg kg⁻¹) is likely to have achieved adequate DA₂ receptor blockade. Although no equivalent human studies have been undertaken, work in the dog indicates that dose-related DA₂ blockade

Table 1 Mean, urine sodium (U₅Na V) and potassium (U₅K V) excretion, and urine flow, in six normal subjects receiving gludopa, gludopa with domperidone, or domperidone. Values are mean ± s.e. mean.

<table>
<thead>
<tr>
<th></th>
<th>Gludopa</th>
<th>Gludopa and domperidone</th>
<th>Domperidone</th>
</tr>
</thead>
<tbody>
<tr>
<td>U₅Na V (mmol h⁻¹)</td>
<td>4.8</td>
<td>6.5</td>
<td>5.1</td>
</tr>
<tr>
<td>U₅K V (mmol h⁻¹)</td>
<td>4.3</td>
<td>5.1</td>
<td>5.5</td>
</tr>
<tr>
<td>Urine flow (ml h⁻¹)</td>
<td>171</td>
<td>210</td>
<td>205</td>
</tr>
</tbody>
</table>

Table 2 Mean effective renal plasma flow (ERPF), glomerular filtration rate (GFR) and filtration fraction (FF) in six normal subjects receiving gludopa, gludopa with domperidone, or domperidone. Values are mean ± s.e. mean.

<table>
<thead>
<tr>
<th></th>
<th>Gludopa</th>
<th>Gludopa and domperidone</th>
<th>Domperidone</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERPF (ml min⁻¹)</td>
<td>619</td>
<td>600</td>
<td>559</td>
</tr>
<tr>
<td>GFR (ml min⁻¹)</td>
<td>123</td>
<td>122</td>
<td>111</td>
</tr>
<tr>
<td>FF</td>
<td>0.20</td>
<td>0.21</td>
<td>0.20</td>
</tr>
</tbody>
</table>

* P < 0.05 for increment over baseline (−2–0) compared to control (domperidone)

† = n = 5
occurs at 0.5–5.0 μg kg⁻¹, with no DA₁ antagonist even at 5 mg kg⁻¹ (Glock et al., 1982). The lack of effect of a DA₂ receptor antagonist on the gludopa-induced natriuresis is consistent with the observation that dopamine-induced natriuresis in the dog is inhibited by the peripheral DA₁ antagonist SCH 23390 (Frederickson et al., 1984). Since an increase in renal sympathetic nerve activity can result in sodium retention, and a reduction in activity, producing a natriuresis (Moss, 1982), inhibition of adrenergic neurones by stimulation of pre-synaptic DA₂ receptors might be proposed as a mechanism for a part of the dopamine-induced natriuresis. The present study, however, indicates that this was not an important effect in our subjects.

In a previous study of gludopa in normal subjects, we demonstrated a significant increase in mean ERPF and GFR (Worth et al., 1985). It is possible that the renal haemodynamic changes in the present study failed to reach significance because fewer subjects were studied. However, in view of the reported α₁-adrenoceptor antagonist activity of domperidone (Ennis & Cox 1980), it is also possible that there was a slight renal vasodilatation during the control study, resulting from a reduction in renal sympathetic nerve activity as a result of the action of domperidone itself. Nevertheless, the trend towards an increase in ERPF and GFR on gludopa did not appear to be reduced by concomitant treatment with domperidone, which would be consistent with the known mediation of renal vasodilatation by DA₁ receptors (Goldberg & Kohli, 1983).

In the current study, basal PRA was higher, and sodium excretion lower, than in earlier work (Worth et al., 1985). These differences may simply represent random differences, or may indicate greater activation of the renin-angio-

![Figure 1](image_url)
Figure 1 Plasma renin activity (PRA) in six normal subjects, receiving gludopa, gludopa with domperidone or domperidone.

<table>
<thead>
<tr>
<th>Gludopa</th>
<th>Gludopa + domperidone</th>
<th>Domperidone</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>PRA (ng Al mL⁻¹ h⁻¹)</td>
<td>2.2</td>
<td>1.5*</td>
</tr>
<tr>
<td>PA (pmol l⁻¹)</td>
<td>368</td>
<td>218</td>
</tr>
</tbody>
</table>

*P < 0.05 for change from baseline (0 h) compared to both other study days.
tensin-aldosterone axis in the present study, which was conducted during unusually warm weather. However, administration of gludopa resulted in a 30% fall in PRA in both studies, and the slight rise in PRA on the control day in the current study (domperidone alone) was similar to the rise occurring with saline alone in the previous work. These observations suggest that the direction and magnitude of PRA changes induced by gludopa are not affected by physiological alterations in the degree of activation of the renin-angiotensin axis. The slight rise in PRA seen with domperidone alone in the present study, and the similar rise observed with saline alone in previous work (Worth et al., 1985), are in agreement with the lack of effect of domperidone on PRA demonstrated by Sowers and coworkers (1982). The attenuation by domperidone of the gludopa-induced fall in PRA, therefore suggests that a part of the effect of gludopa on PRA is mediated by a DA2 receptor. Our observations on the effect of gludopa in man differ from previous reports on the effect of i.v. dopamine, where doses of 5 µg min⁻¹ kg⁻¹ (Witzgall et al., 1985) or up to 600 µg min⁻¹ (Wilcox et al., 1974) have been shown to increase PRA. It would appear, therefore, that in man, pharmacological doses of dopamine intravenously result in an increase in PRA. Animal studies have shown that PRA rises when high doses of DA are given (Otsuka et al., 1970), or when dopamine is administered to animals with denervated kidneys (Imbs et al., 1975; Holdaas, 1982). In vitro studies using dopamine at 10⁻⁵ M concentrations have also demonstrated a dopamine-induced rise in PRA (Quesada et al., 1979; Henry et al., 1977). When the renal nerves are intact, and lower (but nevertheless pharmacological) doses of DA are used, PRA is not altered significantly (Chokshi et al., 1979; Otsuka et al., 1970). Furthermore, if CNS dopamine concentration is increased and the renal nerves are left intact, there is a fall in PRA (Blair et al., 1977). These findings, and the present observations, could be explained by the existence of a balance, in the intact subject, between dopamine stimulation of PRA release through DA1 or β₁-adrenoceptors (Vanhees et al., 1985), and dopaminergic inhibition of PRA release through an effect of peripheral DA2 presynaptic, or central, DA receptors. A central dopamine effect cannot be entirely excluded, but is unlikely, since domperidone, which abolished the gludopa-induced fall in PRA, has been shown not to cross the blood–brain-barrier (Laduron & Leysin, 1979), and dopamine itself penetrates the cerebrospinal fluid poorly.

The changes in plasma aldosterone are interesting, but the small number of subjects prevents any firm conclusions being drawn. However, the absence of any rise in mean PA following domperidone is in agreement with the studies of Sowers et al. (1982) who found no increase in PA after domperidone administration, in contrast to the sharp rise known to occur following metoclopramide (Carey et al., 1979).

These observations suggest that there is little or no contribution of DA2 receptors to gludopa-induced renal vasodilatation and natriuresis, but suggest that there is a peripheral dopaminergic inhibition of renin release mediated in part by the DA2 receptor. Exploitation of this effect may prove valuable in the development of dopamine agonists for the treatment of hypertension and heart failure.

We thank the British Heart Foundation for assistance in the purchase of gludopa; the Department of Chemical Pathology, University of Leeds, for biochemical determinations; Dr P. Denning-Kendall, Division of Steroid Endocrinology, Department of Chemical Pathology for estimation of plasma aldosterone concentrations; and Mrs M. E. Smith for secretarial assistance.

References

Felder, R. A., Blecher, M., Calcagno, P. L. & Jose,

(Received 12 July 1985, accepted 11 December 1985)