Supporting information file for Sharp Bounds and Normalization of Wiener-type Indices

We describe here detailed proofs of Theorems 1-4. We start with some definitions and three Lemmas.

A matrix \(A = (a_{ij})_{1 \leq i,j \leq n} \) is majorized by matrix \(B = (b_{ij})_{1 \leq i,j \leq n} \), denoted by \(A \preceq B \) or \(B \succeq A \) if and only if

\[
a_{(i)} \leq b_{(i)} \quad \text{for } 1 \leq i \leq n
\]

where \(a_{(i)} \) and \(b_{(i)} \) are the \(i \)-th smallest elements in \(A \) and \(B \). \(A \) is strictly majorized by \(B \), denoted by \(A < B \) or \(B > A \) if and only if

\[
a_{(i)} \leq b_{(i)} \quad \text{for } 1 \leq i \leq n
\]

and

\[
a_{(i)} < b_{(i)} \quad \text{for some } i.
\]

Matrices \(A \) and \(B \) are said to be equivalent, denoted by \(A \equiv B \) if and only if

\[
a_{(i)} = b_{(i)} \quad \text{for } 1 \leq i \leq n.
\]

Majorization, strict majorization, and equivalent between two vectors \(A = (a_i)_{1 \leq i \leq n} \) and \(B = (b_i)_{1 \leq i \leq n} \) are defined similarly.

Let \(G \) be a graph, define \(V(G) \) as the set of nodes in \(G \), and \(E(G) \) as the set of edges in \(G \). Let \(\deg_G(u) \) denote the degree of node \(u \) in graph \(G \). When there is no risk of ambiguity which graph \(G \) we are considering, we abbreviate \(\deg_G(u) \) to \(\deg(u) \). Define \(ne(u) = \{ v \in V(G) : (u, v) \in E(G) \} \) and call it neighborhood of node \(u \). A node of degree 1 is called a pendant node or a leaf. A node which is not a pendant node is called an internal node.

A tree is called a starlike tree if it has exactly one node of degree greater than two. Figures 1(c), 1(f), and 1(g) show 8-node starlike trees with maximum degree equal to 5, 4, and 5 respectively.

Lemma 1 Let \(T \) be a connected tree, \(u_1 \) a pendant node and \(u_2 \) an internal node. Suppose all nodes, if there is any, in the shortest path connecting \(u_1 \) and \(u_2 \) are of degree 2. Then

\[
(d(u_2, v))_{v \in V(T)} < (d(u_1, v))_{v \in V(T)}.
\]
Proof. Let P_{u_1,u_2} denote the path connecting u_1 with u_2. For $v \in V(T) \setminus V(P_{u_1,u_2})$

$$d(u_1, v) = d(u_1, u_2) + d(u_2, v) > d(u_2, v).$$

And

$$d(u_1, v)_{v \in V(P_{u_1,u_2})} \equiv d(u_2, v)_{v \in V(P_{u_1,u_2})}.$$

Thus

$$(d(u_2, v))_{v \in V(T)} < (d(u_1, v))_{v \in V(T)}.$$

\(\square\)

Lemma 2 Consider two distinct trees T_1 and T_2. Let $u_1, u_2 \in V(T_1)$ with u_1 of degree at least 2 and u_2 a pendant node satisfying the property that any node, if there is any, on the shortest path connecting u_1 and u_2 is of degree 2. Let $u_3 \in V(T_2)$. A new tree T is constructed by connecting u_1 and u_3, and T' is constructed by connecting u_2 and u_3. Then,

$$D(T) < D(T').$$

Proof. Observe that

$$(d(v_1, v_2))_{v_1,v_2 \in V(T_1)} \equiv (d'(v_1, v_2))_{v_1,v_2 \in V(T_1)};$$

$$(d(v_1, v_2))_{v_1,v_2 \in V(T_2)} \equiv (d'(v_1, v_2))_{v_1,v_2 \in V(T_2)}.$$

For $v_1 \in V(T_2)$, we have

$$(d'(v_1, u_3))_{v_2 \in V(T_1)}
\equiv d'(v_1, u_3) + 1 + (d'(u_2, v_2))_{v_2 \in V(T_1)}
\equiv d(v_1, u_3) + 1 + (d(u_2, v_2))_{v_2 \in V(T_1)}$$

and
Figure S1. Illustrating the choices of u_1, u_2 and u_3 in Lemma 2. Here T_1 has 5 nodes, T_2 3 nodes. We choose $u_1 = 3, u_2 = 5$ and $u_3 = 6$. Tree T is constructed by joining u_1 and u_3 while T' by joining u_2 and u_3. $D(T)$ and $D(T')$ are 8×8 matrices where the first 5 columns correspond to the 5 nodes in T_1, and the last 3 rows correspond to the 3 nodes in T_2.

Thus $D(T) \prec D(T')$. \square

Manipulations in Lemma 2 are illustrated in Figure S1.

Starting from a tree T with m number of nodes with maximum degree $\Delta(T)$. If $m \geq 2$, Lemma 2 can be iteratively applied to construct a tree T' such that the maximum degree is equal to that of T but the
number of nodes in T' with the maximum degree is reduced by 1. If $m = 1$, then Lemma 2 can also be iteratively applied to construct a tree T' with maximum degree $\Delta(T') = \Delta(T) - 1$.

Lemma 3 Given $i + j = k + \ell = n$, $1 \leq \ell < i < j < k$, T is created by connecting internal node u_1 of S_i and internal node u_2 of S_j. T' is created by connecting internal node u_3 of S_k and internal node u_4 of S_{ℓ}. Then

$$(d'(u_3, v))_{v \in V(T')} \prec (d(u_1, v))_{v \in V(T)},$$

$$D(T') \prec D(T).$$

Proof. Note that $|V(T)| = |V(T')| = n$.

Note also that $(d(u_1, v))_{v \in V(T)}$ has 1 entry equals to 0, i entries equal to 1 and $j - 1$ entries equal to 2. Similarly $(d'(u_3, v))_{v \in V(T')}$ has 1 entry equals to 0, k entries equal to 1 and $\ell - 1$ entries equal to 2. Thus $(d(u_3, v))_{v \in V(T')} \prec (d(u_1, v))_{v \in V(T)}$ proving the first majorization.

Both $D(T)$ and $D(T')$ have n entries equal to 0, $2(n - 1)$ entries equal to 1. $D(T)$ has $2(i - 1)(j - 1)$ entries equal to 3 and the rest of entries 2, $D(T')$ has $2(k - 1)(\ell - 1)$ entries equal to 3 and the rest of entries 2. Since $(k - 1)(\ell - 1) < (i - 1)(j - 1)$, thus $D(T') \prec D(T)$ proving the second majorization, and hence the proof of Lemma 3. \hfill \square

Manipulations in Lemma 3 are illustrated in Figure S2, where $n = 10$, $i = j = 5$, $\ell = 3$, $k = 7$.

Proof of Theorem 2

In this section we will find upper and lower bounds of $W_f(T)$ for $T \in \mathcal{T}_n$. Lemmas 4 and 5 are dedicated to investigate the relationship between a tree’s distance matrix and its maximum degree.

Consider the following subtree pruning and regrafting (SPR) algorithm:

Input $T \in \mathcal{T}_n$ with $\Delta(T) \geq 3$:

1. Choose a pendant node u_1, and an internal node u_2 with $\text{deg}(u_2) \geq 3$ satisfying the condition that all nodes lying on the shortest path connecting u_1 and u_2, if any, are of degree 2.

2. Choose $u_3 \in ne(u_2)$ such that u_3 does not lie on the shortest path connecting u_1 and u_2.

3. A new tree $T' \in \mathcal{T}_n$ is constructed by first deleting (u_2, u_3) and then connecting u_3 to u_1.
Figure S2. Illustration of Lemma 3. Here $n = 10, i = j = 5, \ell = 3, k = 7$. From the counts of the distances above, it is clear that $(d'(u_3, v))_{v \in V(T')} < (d(u_1, v))_{v \in V(T)}$ and $D(T') \prec D(T)$.

This algorithm outputs a tree T^0 with these properties: (i) $D(T) \prec D(T^0)$; (ii) $\Delta(T) - 1 \leq \Delta(T^0) \leq \Delta(T)$; and (iii) number of pendant nodes is one less than that of T.

To see this, let P_{u_1,u_2} denote the path connecting u_1 with u_2. Observe that

$$(d(v_1, v_2))_{v_1, v_2 \in V(T) \setminus V(P_{u_1,u_2})} = (d^0(v_1, v_2))_{v_1, v_2 \in V(T) \setminus V(P_{u_1,u_2})}$$

and

$$(d(v_1, v_2))_{v_1, v_2 \in V(P_{u_1,u_2})} = (d^0(v_1, v_2))_{v_1, v_2 \in V(P_{u_1,u_2})}.$$

For $v_1 \in V(T) \setminus V(P_{u_1,u_2})$, we have

$$(d(v_1, v_2))_{v_2 \in P_{u_1,u_2}} = d(v_1, u_3) + 1 + (d(u_2, v_2))_{v_2 \in P_{u_1,u_2}}$$

and
Figure S3. Illustration of the subtree pruning and regrafting algorithm. Here T_0 is obtained from T first by deleting the edge (u_2, u_3) and then connecting u_1 and u_3. T_0 is proved to satisfy these properties: (i) $D(T) \prec D(T^0)$; (ii) $\Delta(T) - 1 \leq \Delta(T^0) \leq \Delta(T)$; and (iii) number of pendant nodes is one less than that of T.

Thus $D(T) \prec D(T^0)$ and property (i) follows. Since $\deg_{T^0}(u_2) = \deg_T(u_2) - 1$, $\deg_{T^0}(u_1) = 2$, $\deg_{T^0}(u) = \deg_T(u)$ for $u \neq u_1, u_2$. Then properties (ii) and (iii) follow.

Manipulations of SPR algorithms are illustrated in Figure S3.

Lemma 4 Let $T \in \mathcal{T}_n$ with $\Delta(T) \geq 3$. There exists $T' \in \mathcal{T}_n$ such that $\Delta(T') = \Delta(T) - 1$ and

$$D(T) \prec D(T').$$

Proof. Let ℓ be the number of pendant nodes in T. Apply SPR algorithm to T to obtain T^0. If
$\Delta(T^0) = \Delta(T) - 1$, then we stop and take $T' = T^0$. Otherwise let $T = T^0$ and apply SPR algorithm again. We repeat this algorithm until we obtain the desired tree T'. Note that this algorithm will be repeated at most ℓ times to get the desired tree.

Lemma 5 Let $T \in \mathcal{T}_n$ with $2 \leq \Delta(T) < n - 1$. There exists $T' \in \mathcal{T}_n$ such that $\Delta(T') = \Delta(T) + 1$ and $D(T') \prec D(T)$.

Proof. We write $\Delta(T) = k$. Choose $u \in V(T)$ with degree m in such a way that all its neighbors except one are pendant nodes. Write $\text{ne}(u) = \{u_1, \ldots, u_{m-1}, u_m\}$ where u_m is the only internal node in T. We consider two cases: 1: $m - 1 + \deg_T(u_m) < k + 1$ and 2: $m - 1 + \deg_T(u_m) \geq k + 1$.

1. A new tree T^0 is constructed by deleting edge (u, u_j), and then connecting u_j to u_m for $1 \leq j \leq m - 1$. We claim that T^0 satisfies $\Delta(T^0) = k$ and $D(T^0) \prec D(T)$. Since $\deg_{T^0}(v) = \deg_T(v), v \in V(T) \setminus \{u, u_m\}, \deg_{T^0}(u) = 1, \deg_{T^0}(u_m) = \deg_T(u_m) + m - 1 \leq k$, so $\Delta(T^0) = k$. $D(T^0) \prec D(T)$ follows from Lemma 3. Let $T = T^0$ and repeat this procedure again. Note that the number of pendant nodes in T increases by 1 for each application of this procedure.

2. A new tree T^0 is constructed by deleting edge (u, u_j), and connecting u_j to u_m for $1 \leq j \leq k - \deg_T(u_m)$. As in case 1, T^0 satisfies $D(T^0) \prec D(T)$. Since $\deg_{T^0}(v) = \deg_T(v), v \in V(T) \setminus \{u_1, u_m\}, \deg_{T^0}(u) = \deg_T(u) - (k + 1 - \deg_T(u_m)) < k, \deg_{T^0}(u_m) = k + 1$, so $\Delta(T^0) = k + 1$. Let $T' = T^0$ and T' satisfies conditions in Lemma 5.

In either case, we shall eventually produce a tree as required in Lemma 5.

Since the star graph has the largest maximum degree, and the path graph has the smallest maximum degree among trees in \mathcal{T}_n, by Lemmas 4 and 5, we obtain the following corollary.

Corollary 1 Let $T \in \mathcal{T}_n$ with $2 < \Delta(T) < n - 1$. Then

$$D(S_n) \prec D(T) \prec D(P_n).$$

Proof of Theorem 2 Applying Corollary 1 and the fact that f is increasing.

7
Proof of Theorem 1

Define $G_n(m)$ as a set of connected graphs with the number of nodes n and the number of edges m.

First we will show that maximum value of $W_f(G)$ over $G \in G_n(m)$ is a monotone function of the number of edges, m, of G.

Lemma 6 Let $G \in G_n$. Then $\max_{G \in G_n(m)} W_f(G)$ and $\min_{G \in G_n(m)} W_f(G)$ are decreasing functions in m.

Proof. For any $G \in G_n$ with $D(G) = (d(i,j))_{1 \leq i,j \leq n}$. Since $m \geq n$, G cannot be a tree and hence contains a cycle. Choose an edge in a cycle in G and delete it to form G'. Let’s say the deleted edge is $(1,2)$. Note that $G' \in G_n(m-1)$. Write $D(G') = (d'(i,j))_{1 \leq i,j \leq n}$. Since $E(G) \subset E(G')$, $d(i,j) \leq d'(i,j)$, $1 \leq i < j \leq n$, $W_f(G) \leq W_f(G')$. So $\max_{G \in G_n(m)} W_f(G) \leq \max_{G \in G_n(m-1)} W_f(G)$, for $m \geq n$.

Consider $n \leq m \leq \frac{n(n-1)}{2}$. For any $G \in G_n(m-1)$, we connect two nodes with distance greater than 1 in G and call the resulting graph G''. Now $G'' \in G_n(m)$ with $D(G'') = (d''(i,j))_{1 \leq i,j \leq n}$. Since $E(G) \subset E(G'')$, $d''(i,j) \leq d(i,j)$, $1 \leq i < j \leq n$, thus $W_f(G'') \leq W_f(G)$. So $\min_{G \in G_n(m)} W_f(G) \leq \min_{G \in G_n(m-1)} W_f(G)$ for $m \geq n$.

Proof of Theorem 1 From Lemma 6 we have

$$W_f(K_n) \leq W_f(G) \leq \max\{W_f(T) : T \in T_n\}.$$

From Theorem 2

$$W_f(P_n) = \max\{W_f(T) : T \in T_n\}.$$

Thus Theorem 1 follows.

Proof of Theorem 3

In this section, we consider trees with a given maximum degree. The relationship between the distance matrix and the number of nodes with degree equal to maximum degree is investigated.

Lemma 7 Let $T \in T_n$ with n_1 nodes with degree equal to $\Delta(T)$. Suppose $n_1 \geq 2$ and $\Delta(T) \geq 3$. There exists $T' \in T_n$ with $\Delta(T') = \Delta(T)$ and $n_1 - 1$ nodes with degree equal to $\Delta(T)$. Moreover, we have

$$D(T) \prec D(T').$$
Proof. Let ℓ be the number of pendant nodes in T. Apply SPR algorithm to T to obtain T⁰. If T⁰ has n₁ − 1 nodes with degree equal to Δ(T), then we stop and take T' = T⁰. Otherwise let T = T⁰ and apply SPR algorithm again. We repeat this algorithm until we obtain desired tree T'. Note that this algorithm will be repeated at most ℓ − n₁ + 1 times to obtain desired tree.

Corollary 2 Let T ∈ Tn with 2 < Δ(T) < n − 1. There exists a starlike tree T' with Δ(T) = Δ(T') such that

\[D(T) < D(T') \]

Corollary 2 states that among trees with equal maximum degree, distance matrix of a tree with more than one node with maximum degree is strictly majorized by a distance matrix of a starlike tree. Next to find a tree whose distance matrix majorizes all starlike trees.

Lemma 8 Let T be a starlike tree with Δ(T) = k ≥ 3. Then

\[D(T) \preceq D(B_{n,k+1}) \]

with equality holds if and only if T is B_{n,k+1}.

Proof. Assume T is non-isomorphic to B_{n,k+1}. Denote by u the node with maximum degree k, by u₁, . . . , uₖ pendant nodes in T, and by Vᵢ set of nodes in the shortest path connecting node u and uᵢ, 1 ≤ i ≤ k. Next a new tree T⁰ is constructed by deleting edge (uₖ₋₁, ne(uₖ₋₁)) and connecting uₖ₋₁ to uₖ.

For i, j ∈ V \ {uₖ₋₁},

\[d(i, j) = d⁰(i, j). \]

For i ∈ V \ (Vₖ₋₁ ∪ Vₖ)

\[d(i, uₖ₋₁) = d(i, u) + d(u, uₖ₋₁) \]
\[d⁰(i, uₖ₋₁) = d⁰(i, u) + d⁰(u, uₖ₋₁) = d(i, u) + d(u, uₖ) + 1 \]

thus
\[d(i, u_{k-1}) < d^0(i, u_{k-1}). \]

And

\[(d(i, u_{k-1}))_{V_{k-1} \cup V_k} = (d^0(i, u_{k-1}))_{V_{k-1} \cup V_k}, \]

since both vectors are distances of a pendant node to other nodes in one path with length \(d(u_{k-1}, u_k) \).

Thus \(D(T) \prec D(T^0) \). If \(T^0 \) satisfies \(d^0(u, u_1) = \cdots = d^0(u, u_{k-1}) = 1 \), then we stop and \(T^0 \) is \(B_{n,k+1} \). Otherwise let \(T = T^0 \) and we repeat this process until get tree \(B_{n,k+1} \). Note that this algorithm will be repeated \(n - k - d(u, u_k) \) times. \(\square \)

Lemma 9 For \(k \geq 3 \),

\[D(B_{n,k+1}) \prec D(B_{n,k}) \]

Proof. Lemma 9 follows directly from Lemmas 4 and 8. \(\square \)

Proof of Theorem 3 Applying Lemma 8 and the fact that \(f \) is increasing.

Remark It has been proven in corollary 3.5 of [1] that

\[W_f(T_n(k)) = \min \{ W_f(T) : T \in \mathcal{T}_n, \Delta(T) = k \} \quad (\ast) \]

where \(T_n(k) \) is a \(k \)-ary tree, also called Volkmann tree [2]. It remains open whether

\[D(T_n(k)) \preceq D(T) \quad \text{for } T \in \mathcal{T}_n, \Delta(T) = k \quad (\ast\ast) \]

holds for all \(k, n \) and \(k \leq n \). We have verified that \((\ast\ast) \) holds for \(6 \leq n \leq 9 \) and \(k = 3 \). If \((\ast\ast) \) is true for all \(n \) and \(k \), it provides an alternative proof of

\[W_f(T_n(k)) \leq W_f(T) \]

for \(T \in \mathcal{T}_n, \Delta(T) = k \), and \(f \) monotonically increasing.
Proof of Theorem 4

Proof. Let T be a spanning tree of G satisfying $\Delta(T) = k$. Similar to the proof of Theorem 1, one can prove that $D(G) \preceq D(T)$. By Theorem 3, $D(T) \preceq D(B_{n,k+1})$. Thus $W_f(G) \leq W_f(B_{n,k+1}). \square$

References
